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Abstract 

This thesis contains the development of a deformation monitoring software based on 

undifferenced GPS observations. Software like this can be used in alarm systems 

placed in areas where the earth is unstable. Systems like this can be used in areas where 

people are in risk of getting hurt, like in earthquake zones or in land slide areas, but 

they can also be useful when monitoring the movements in buildings, bridges and other 

artefacts.  

The main hypotheses that are tested are whether it is possible to detect deformations 

with undifferenced observations and if it is possible to reach the same accuracy in this 

mode as when working in a traditional mode where the observations are differenced.  

The development of a deformation monitoring software based on undifferenced GPS 

observations is presented. A complete mathematical model is given as well as 

implementation details. The software is developed in Matlab together with a GPS 

observation simulator. The simulator is mainly used for debugging purposes. 

The developed software is tested with both simulated and real observations. Results 

from tests with simulated observations show that it is possible to detect deformations in 

the order of a few millimetres with the software. Calculations with real observations 

give the same results. Further, the result from calculations in static mode indicates that 

the commercial software and the undifferenced software diverge a few millimetres, 

which probably depends on different implementations of the tropospheric corrections. 

In kinematic mode the standard deviation is about 1 millimetre larger in the 

undifferenced mode than in the double differenced mode. An initial test with different 

observation weighting procedures indicates that there is a lot of potential to improve 

the result by applying correct weights to the observations. This is one of the aims in the 

future work within this project. 

This thesis are sponsored by the Swedish Research Council for Enviroment, 

Agricultural Sciences and Spatial Planning, FORMAS within the framework 

“Monitoring of construction and detection of movements by GPS ref no. 2002-1257” 
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1 Introduction 

Everything on earth is in motion. The main part of these motions is very slow and we 

can not sense them with our human senses. Other motions are larger and more 

hazardous, as earth quakes and land slides, and if we are unlucky be killed by them. 

Most of these dangerous motions are preceded by slow motions of the type that we 

cannot sense. By the use of special sensors, it is possible to detect these small motions 

and predict when a catastrophe is to come. This is what this thesis is about the 

developing of a system which can detect small motions and alarm if something 

unpredicted is about to happen.  

There are several different types of sensors that can be used to detect slow and small 

motions. They either work in relative or in absolute mode. In relative mode all sensors 

are placed on the object that is moving and the sensors sense relative changes among 

each other. Absolute sensors, on the other hand, are placed both on the moving object 

and on some non moving objects away from the moving object. The benefit of the 

absolute method is that the absolute change is sensed but a problem is that there is often 

a long distance between the moving and the fix objects.  

During a long time motion monitoring has been a subject for surveying engineers. 

Several different techniques have been used to measure movements as triangulation 

with total stations, precise levelling, close range photogrammetry, laser scanning and 

with satellite methods as GPS, DORIS and SLR. Common within all these methods are 

that they are measured in repeated campaigns and the result is presented determined 

after the campaign is finished. 

If an alarm function is wanted or if the motions must be monitored all of the time, the 

mentioned systems will not fulfil the needs, since they do not operate in real-time. A 

type of sensors that have become very popular during the last 15 years for motion and 

deformation monitoring are the GPS-receivers. The GPS-technology has some good 

properties; one is that it possible to measure baselines with a high accuracy over long 

distances without any demand of a line-of-sight between the receivers. This makes it 

possible to perform absolute motion and deformation monitoring where the distance 

between the moving area and the fix points are long. 

There are several different movement and deformation monitoring systems available on 

the market today like  

• GRAZIA, developed at Graz University of Technology, Gassner et al. (2002) 

• GOCA, (GPS based online control and alarm system) developed at 

Gachhochschule Kalsruhe, Jäger and Kälber (2004) 
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• RT-MODS2- Real-Time Monitoring Of Dynamic Systems, developed at 

Istambul Technical University, Ince and Sahin (2000) 

• GNPOM, Geodetic Navstar - Permanent Object Monitoring, Geo++®, 

(www.geopp.de)  

• Motion Tracker, by Trimble (www.trimble.com) 

The deformation monitoring systems can be separated into three categories according 

to their way of using the observations. The first category is the post processing 

category, where Motion tracker from Trimble belongs. The observations from the GPS-

receivers in this category are stored in observation files that are placed in a file library. 

The baselines are calculated with a given time interval and the result is stored in a 

database from which one can perform the deformation analyses. This is not a true real-

time system but still a system that perform deformation analyses automatically, 

however with a little time delay.  

The second category uses the result calculated in the receivers in RTK-mode (Real 

Time Kinematic) for deformation monitoring. RT-MODS2 and GOCA are typical 

softwares of this category. In RT-MODS2 the coordinates from the RTK solution are 

directly used in the deformation monitoring. GOCA uses the same information but 

instead of taking the coordinates directly, it first performs an adjustment of all the 

observations from the same epoch in a traditional network adjustment. The benefit of 

this approach is that outliers can be detected as well as movements in the static 

receivers. A problem with this approach is that the correlations among the baselines are 

not treated correctly. 

The third category is the one that uses raw data; all observations are sent into the 

central computer, where the calculations are performed. GRAZIA and GNPOM are 

softwares that follow this approach. The differences between these softwares are that 

GARZIA is based on double differenced observations while GNPOM is based on 

undifferenced observations. More about the mathematical principles of the differenced 

and the undifferenced approaches follows in the next chapter of the thesis.  

The goal with the project, which this thesis is a part of, is to build a system for real-

time movement detection at mm level, based on GPS observations. The system will 

consist of two or more GPS receivers, data-links between them and a central computer 

with software developed to detect deformation and an alarm system.  

As one part of the research a software based on undifferenced GPS observations is 

developed. The reason for developing a new software is to fully understand each step in 

this type of software and to have a platform for further research within the area. For the 

evaluation, the software is developed in object oriented Matlab code, which in the 
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future will be converted into a programming language that is more adapted for real-

time applications.  

1.1 Author’s contribution 

This thesis describes the fundamental process in developing a deformation monitoring 

software. The author has contributed with a software, based on undifferenced GPS 

observations, that are able to calculate coordinates and detect deformations.  

In the beginning of the second chapter, the observation equations for GPS observations 

are introduced. Thereafter follows a comparison of the undifferenced and double 

differenced algorithms to compare their advantages and disadvantages. The theory of 

each of these technologies is mainly known information summarised to motivate the 

undifferenced solution.  

The undifferenced model we use is described in Chapter 3 together with deterministic 

models of all unknown parameters that are estimated in the software. The Kalman filter 

described in this chapter is a known general mathematical approach for solving the 

state parameters of a dynamic system. The author has to find a suitable dynamic model 

for each parameter and derive corresponding transmission and process noise covariance 

matrix. This part of the thesis is performed in collaboration with supervisor Milan 

Horemuz. 

In Chapter 4, follows a description of the implementation details. Two new algorithms 

are presented in this chapter: first an algorithm that unifies the calculation methods for 

the satellite coordinates, presented by Horemuz et al. (2006), and then an algorithm that 

makes it possible to use GPS-antenna calibrations from NGS (U.S. National Geodetic 

Survey) in an arbitrary direction. The author has contributed in the paper where he 

implemented the algorithm in Matlab and did the numerical calculations. The new 

antenna orientation algorithm is developed by the author. 

To study the performance and simplify the debugging procedure, a simulator is 

generated, which is described in Chapter 5. The contribution of the author in this 

chapter was to implement the same type of stochastic and deterministic models in the 

simulator.  

A series of calculations are done with the developed software, the result from these are 

presented in Chapter 6. The author has here compared the result from the developed 

software with the result from commercial softwares. Initial tests with different 

weighting models are also done here.  

Finally in Chapter 7, summary and conclusions and some proposals for further research 

are presented.  
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2 Observation Equations 

Three types of observations can be done with a geodetic GPS-receiver: pseudorange, 

phase and Doppler observations. These observations are done with the receivers in 

epochs with a fix time interval i.e. each second. The pseudorange observations are 

based on the PRN-code message that is modulated on the carrier wave, the phase 

observations are based on the fractional part of the carrier phase and an integer number 

representing full wavelengths from a reference time 0t  and the Doppler count 

observations, represent the difference between nominal and the received frequencies 

between two observation epochs. The purpose of this chapter is to derive the 

observation equations for both pseudoranges and phase observations and to introduce 

the error sources that influence them along their travel path from the satellite to the 

receiver. The Doppler observations are not used in this thesis and are therefore not 

described further within the report. The derivation of the observation equations follows 

the derivation given by Leick (2004) and Hoffmann-Wellenhof et al.(2001). When this 

is done two different approaches of positioning with GPS-observations are introduced: 

differential and undifferenced positioning. At the end of this chapter the advantages 

and disadvantages of each approach are discussed to motivate why the use of the 

undifferenced approach in this thesis.  

2.1 Pseudorange observations  

Pseudorange observations are based on the PRN-code message that is sent out from 

each satellite modulated on the carrier phase signal. The main idea with the 

pseudorange observations is to determine the true travelling time from the satellite to 

the receiver and then to multiply it with the speed of light, to determine the distance 

between the satellite and the receiver. The travelling time is determined in the receivers 

by generating a replica of the PRN-code message in the receiver and then maximising 

the correlation between the incoming signal and the generated signal by time shifting 

the latter in the instrument. The total time shift will then correspond to the travelling 

time from satellite to receiver. The pseudorange S

AP between a satellite antenna S and a 

receiver antenna A can be expressed as: 

 ( ) ( )S S

A A AP t = t t c−  (1) 

where At  and St  are nominal times of reception in the receiver and emission of the 

signal from the satellite, respectively c is a constant which represents the speed of light 

in vacuum. From now on we use subscripts for the receivers and superscript to for the 

satellites. Nominal times in the receiver At and satellite St are related to true GPS-times 

A,GPSt  and S

GPSt  respective as 
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A,GPS A A

S S S

GPS

t t t

t t t

= − δ

= − δ
 (2) 

where Aδt and Sδt are the delays in the receiver and satellite clocks with respect to GPS-

time. Additional subscripts are used in the time variables to distinguish between true 

GPS-time and nominal time. Combining the results in Eqs. (1) and (2) we get: 

 
( )

( )

S S S

A A A,GPS GPS A

S S

A A,GPS A

P (t ) t t c c t c t

t c t c t

= − + δ − δ

= ρ + δ − δ
 (3) 

where ( )S

A A,GPStρ is introduced as the true geometric travel distance for the emitted 

signal in true GPS-time A,GPSt . Since the A,GPSt at the receiver is unknown, the geometric 

distances are linearised around the known nominal receiver time At . This is done with 

expansion into a Taylor series: 

 ( ) ( ) ( )S

A AS S S 2

A A,(GPS) A A A A A A

HOT

t
(t ) t t t t ...

2!

ρ
ρ = ρ + ρ δ + δ +

��
�

�������
 (4) 

where S

Aρ� , S

Aρ�� ,… are the first and second order time derivatives of the geometric 

distance according to the nominal receiver time At . Ignoring the higher order terms 

(HOT) in Eq.(4), the geometric distance can be written as: 

 ( ) ( ) ( )S S S

A A,GPS A A A A At t t tρ = ρ + ρ δ�  (5) 

and the code pseudorange observation can be rewritten by combining Eqs.(3) and (5) 

as: 

 ( ) ( ) ( )( )S S S S

A A A A A A AP t t t c t c t= ρ + ρ + δ − δ�  (6) 

here S

Aρ� is the radial velocity along the vector between the satellite and the receiver. 

This velocity has a maximum value of approximately 800 m/s according to Leick 

(2004). If the clock delay Aδt  is about 10µs , the radial influence of S

Aρ� has a maximal 

value of 8 millimetres, which is significant in the case of relative positioning with 

phase observations. 

2.2 Phase observations 

To describe the phase observations we start by studying how the incoming signal is 

processed in the GPS receivers. When a GPS receiver A is started at nominal time 0t , it 

generates a carrier with nominal frequency Af and phase ( )A Atϕ , based on the receiver 

clock. Incoming signals from a satellite is reconstructed in the receiver with a carrier 

frequency S
if and phase ( )S

Atϕ  based on the satellite clock. The instrument records the 
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sum of all changes between the phase of the incoming signal and the receiver generated 

phase. This sum can be expressed in GPS-time as follows: 

 ( ) ( ) ( )S S
A A,GPS A,GPS A A,GPSt t - tϕ = ϕ ϕ  (7) 

The receiver and satellite clocks are related to true GPS-time as described in Eq.(2). 

Taking the clock errors in the satellite clock into account as well as the travelling time 

for the incoming satellite signal we get the following phase for the incoming signal 

given in GPS-time. 

 ( ) ( )( )S S S
A,GPS At f t dt - tρϕ = +  (8) 

The travelling time tρ is determined by dividing the true geometric distance S
Aρ  with the 

speed of light c. The phase in the receiver is given in GPS-time as: 

 ( )A A,GPS A A A At f t f dtϕ = +  (9) 

According to Hoffmann-Wellenhof et al. (2001 p.89), the deviation of the frequencies, 
Sf and Af , from a nominal frequency f is in the order of a fraction part of Hz, so for the 

moment we may treat all the frequencies as the same S
A(f = f = f ) , and come back to 

the issues about the frequency later on. The satellite clock error is even smaller, at the 

range of milliseconds, and is therefore ignored. With these assumptions we can rewrite 

the phase equations at epoch At as:  

 ( ) ( )
S

S S SA
A A,GPS A At fdt ft fdt f f dt dt

c
ρ

 ρ
ϕ = − − = − − − 

 
 (10) 

The observed phase difference does not tell anything about the total number of phases 

which is used to determine the distance from the receiver to the satellite. There is an 

unknown integer number S
AN  missing in Eq.(10), which represents the amount of 

whole cycles between the satellite and the receiver. This number of whole cycles, also 

known as the phase ambiguities, is constant from the initialization of the instrument 

where the phase signal is locked to the receiver generated phase, if the signal is not lost 

or the tracking interrupted. Using the well-known physical relation between 

wavelengths and frequencies, -1f c= λ , which can be found in any basic textbook 

containing the fundamentals of physics, like Halliday et al (2001), we can Eq.(10) as: 

 ( ) ( )
S

A,GPSS SA
A A,GPS A,GPS A

c t
t t N

⋅ρ
ϕ = − − +

λ λ
 (11) 

Since the true time A,GPSt  at the receiver is unknown, the geometric distance is 

linearised around the known nominal receiver time At , with Taylor expansion described 
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in Eq.(4). Then we arrive in the following observation equation expressed for the 

nominal time in the receiver and converted from cycles to a distance in metres: 

 
( ) ( )

( )

S S
A A,GPS i A A

S S S S
A A A A A A

t t

(t ) (t ) c t c t N

Φ = λ ϕ

= ρ + −ρ + δ − δ + λ�
 (12) 

The observation equations for the code and phase observations in Eqs.(6) and (12) 

would be complete, if there where no additional error sources involved. In reality there 

are some additional systematic and random errors that have to be added to get the 
complete observation equations. The errors can be divided, as in Table 1, into three 

groups depending on their source. 

 

Table 1. Additional errors that affect the GPS observables 

Satellite  Sδo  - orbital errors 

sa    - satellite clock errors 

SHD - hardware delays in the satellite 

AO – antenna offset in the satellite 

Atmosphere I - ionospheric delay 

T - tropospheric delay (wet and dry) 

Receiver MPA  – Multipath 

APC - antenna phase centre variations  

AHD - hardware delays in the receiver 

ε - random errors for the satellite / receiver combination 

 

Taking these errors into account the complete equation for pseudoranges reads: 

 
( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

S
S S S S S S SA
A,i A A A A A A i,P A A,i AS

A

S S S S S

A,i A A A A,i,P A A,i A A,i,P A A,i,P

P t t t c t c t HD t AO t

I t T t MPa t APC t HD t

= ρ + −ρ + δ − δ + ⋅ δ + +

+ + + + + + ε

R
o

R
�

(13) 

and phase observables 
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( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

s
S S S S S S s

A,i A i A,i A A A A A A i A,i A A

i

S
S S S S S SA

i, A A,i A A,i A A A A,i, AS

A

S S

A,i A A,i, A A,i,

a
t t t t c t c t N t

f

HD t AO t I t T t MPA t

APC t HD t

Φ Φ

Φ Φ

Φ = λ ϕ = ρ + −ρ + δ − δ + λ + ρ

+ ⋅δ + + − + +

+ + + ε

R
o

R

�

(14) 

Subscript i can be 1L  or 2L , denoting the dependence of the variable on the 

observation frequency and subscript P denotes code measurement, i.e. the error term 

with this subscript is not equal to the corresponding error affecting the phase 

pseudoranges. In front of the orbital error, in Eq.(14), is a mapping function 
S S

A AR R based on the vector S

AR  which contains the vector components of the relative 

position between the receiver and the satellite. A further discussion and analysis of all 

these error sources will be done in detail in Section 3.2, and it is therefore not discussed 

here.  

To reach millimetre accuracy with GPS one must use phase observations and find the 

correct value of the unknown ambiguities S
AN . Mathematical it is normal to use least 

square adjustment to estimate a solution to the unknown parameters, described i.e. by 

Bjerhammar (1973). One of the requirements in this approach is that no linear 

dependencies are allowed between the estimated parameters, since the solution then 

becomes singular.  

The parameters in the observation equation Eq.(14) show a linear dependency. The 

ambiguities are linear dependent with the clock errors and the hardware delays. To 

solve this problem there are some various methods, which can be used as a solution. 

Two of them are presented in the subsequent sections of this chapter: the differenced 

and the undifferenced solution. 

2.3 Phase differences 

By the use of data from two satellites and two receivers one can eliminate the 

parameters that are singular as mentioned in the end of previous section. This is done in 

two steps: first two single differences (SD) are created which then are combined in a 

double difference (DD) observation, and both the steps will now be explained with a 

start with the single difference.  

2.3.1 Single differences 

Assume that we have observations from two receivers (k and m) to the same satellite p 

during an epoch t as in Figure 1. The two observation equations are combined into one 

equation for the SD as 
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 p p p

km k m(t) (t) (t)Φ =Φ −Φ  (15) 

By inserting the observation equations from Eq.(14) for receivers k and m into Eq.(15) 

we get the following expression for the single difference 

 

pp
p p p p p p pkm
km km km km km km km kmp

km

p p p p p

km km km, km km, km,

a
(t) (t) (t) t c t N (t) AO (t)

f

I (t) T (t) MP (t) APC (t) HD (t)Φ Φ Φ

Φ = ρ +ρ δ + δ + λ + ρ + ⋅δ +

− + + + + + ε

R
o

R
�

(16) 

( )p

m tΦ( )p

k tΦ

α

 
Figure 1. A single difference is generated by combining observations from two receivers, in 

this case k and m, to one satellite p 

By forming the single differences all the errors related to the satellites are eliminated. 

The remaining parameters that occur in Eq.(16) are combinations of the original 

parameters. The new subscript km indicates the receivers from which the observations 

originate, and the superscripts tell the same about the satellites. For example, the new 

single difference of the geometric distance is given by 

 
p p p

km k m(t) (t) (t)ρ = ρ −ρ  (17) 

All of the differentiated parameters in Eq.(16) can be formed in a similar way. If the 

distance between the receivers k and m is shorter than 100 km, then the orbital error 
pδo and the satellite antenna offset AO can be ignored in Eq.(16). The reason to this is 

that the orbital error is mapped to the geometrical vector between satellite and receiver. 

If the receivers are placed close to each other, then the angle between the two vectors 

(α  in Figure 1) will be small and the orbital error will become much the same at both 

stations and eliminated in the single differencing procedure. The same discussion can 
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be applied to AO. The term with p
a can be neglected, since its contribution is at 0.01 

mm level, if pa  is one millisecond. With these parameters removed, Eq.(16) are 

rewritten into: 

 

p p p p p

km km km km km km km

p p p p

km km, km km, km,

(t) (t) (t) t c t N I (t)

T (t) MP (t) APC (t) HD (t)Φ Φ Φ

Φ = ρ + ρ δ + δ + λ −

+ + + + + ε

�
 (18) 

2.3.2 Double differences 

Double differences are generated by combining two single differences from a pair of 

receivers to two satellites as in Eq.(19), where the single differences between receiver k 

and m to satellite q and p are combined into a double difference. 

 pq p q

km km km(t) (t) (t)Φ =Φ −Φ  (19) 

which also can be written with the use of Eq.(18) as: 

 

pq pq pq pq pq pq pq

km km km km km km km km,

pq pq

km km,

(t) (t) (t) t N I (t) T (t) MP (t)

APC (t)

Φ

Φ

Φ = ρ + ρ δ + λ − + +

+ + ε

�
 (20) 

Figure 2 shows a principle figure of a double difference combination 

( )p

k tΦ
( )q

k tΦ ( )q

m tΦ
( )p

m tΦ

 
Figure 2. Double differences where two single differences are combined 

The double differencing procedure eliminates the receiver errors, both the hardware 

delays and the clock offset are removed since they occur in both single differences. The 

remaining double differenced variables in the double difference equation are 
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pq p q

km km km

pq p q

km km km

pq p q

km km km

pq p q

km km km

pq p q

km km km

pq p q

km, km, km,

pq p q

km km km

pq p q

km, km, km,

(t) (t) (t)

(t) (t) (t)

N N N

I (t) I (t) I (t)

T (t) T (t) T (t)

MP (t) MP (t) MP (t)

APC (t) APC (t) APC (t)

Φ Φ Φ

Φ Φ Φ

ρ = ρ −ρ

ρ = ρ −ρ

= −

= −

= −

= −

= −

ε = ε − ε

� � �

 (21) 

where the new subscript for the parameters indicates the receiver combination and the 

superscript the satellite combination. 

The singularity in the original observation equation is removed with the double 

differences, but correlations between the observations are introduced for all other 

parameters in the double difference observation equation. 

2.3.3 Correlations 

In the previous section we eliminated the singularity in the phase observables 

mathematically by combining observations from two receivers. The benefit of this 

procedure is that the unknown parameters related to the satellite and the receiver clocks 

and hardware delays are removed. To get a complete overview of the result after the 

differencing one must also study the stochastic part of the double differences. Let us 

denote the phase observations at an arbitrary receiver R to the three satellites o, p and q, 

as  

 ( ) ( ) ( ) ( )
T

o p q
R R Rt t t t = Φ Φ Φ Φ  (22) 

The superscript T symbolises the transpose of the vector. Each phase observation is 

assumed to be normal distribution with zero expectation value and variance 2σ . The 

variance of each observation depends on the error sources along the signal path from 

satellite to receiver. It increases with the travelling distance through the atmosphere and 

is therefore directly correlated with the elevation angle. At low elevation angles the 

distance through the atmosphere are longer than at high elevation angles. The 

stochastic nature of the observations and the correlation will be explained in detail in 

Chapter 3 and will not be discussed further here. Instead we assume that all 

observations are uncorrelated with equal variance 2
0σ . The pure mathematical 

correlation matrix can therefore be written as:   

 ( ) 2
0tΦ = σC I  (23) 
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where I is an unit matrix. With the use of the observation equations, single and double 

difference equations (18) and (20), we can derive the correlation matrices for each level 

of differences. This is done in the following subsections. 

2.3.3.1 Single differences 

Single differences are generated with observations from two receivers, combined as in 

Eq.(15). To give an example how the single differences can be generated we use 

observations from two receivers (k and m) to three satellites (o, p and q). Their 

observations are given in two vectors, one fore each receiver, as in Eq.(22). To simplify 

the notation we ignore the time index t and write the single difference combination 

SDΦ in matrix notation as: 

 SD SD SD=Φ A Φ  (24) 

where 

 

o
km

p
SD km

q
km

 
 

=  
 
  

Φ

Φ Φ

Φ

    SD

1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

− 
 = − 
 − 

A     
k

SD

m

 
=  
 

Φ
Φ

Φ
   (25) 

SDA is the design matrix which correspond to two the single differences according to 

Eq.(15). The stochastic model is formed by the law of error propagation of covariance   

 T
SD SD SDΦ=C A C A  (26) 

This gives the covariance matrix for the three single differences. By combining Eqs. 

(26) and (23) we get the following covariance matrix for the single differences 

 ( )2 T 2 T 2
SD SD 0 SD 0 SD SD 02= σ = σ = σC A I A Α A I  (27) 

The identity matrix I indicates that there is no off-diagonal elements different than zero 

in the covariance matrix, and by that, one can make the conclusion that no correlations 

between single differences exist. The size of the matrix I depends on the number of 

single differences that can be formed, or in other words the number of common 

satellites at receiver k and m. The condition that only the common observations can be 

used implies that all other observations are useless. Eq.(27) is a general expression for 

the covariance matrix of the single differences when two receivers are used.  
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2.3.3.1.1 Single differences in a multipoint solution 

In the case when three or more receivers are used in a multipoint solution the situation 

becomes a little more complicated. Additional correlations are introduced when 

observations are used to form more than one single difference. This will be described 

with the following example: Assume that observations are collected at three receivers 

(k, l and m) to the satellite p at epoch t, as in Figure 3. 

( )p

k tΦ
( )p

m tΦ
( )Φ p

n t

 
Figure 3. Three receivers k, l and m records observations the same epoch t to one common 

satellite p 

With the use of these observations we can form two single differences with Eq.(24). 

This gives the following observation and design matrices 

 

p
Tkl p p p

SD,MP k l m SD,MPp
km

1 1 0
                

1 0 1

  −  = = Φ Φ Φ =     −   

Φ
Φ Φ A

Φ
 (28) 

the additional subscript MP indicates multipoint solution. The correlations are brought 

forward by the covariance matrix 

 ( )2 T 2
SD,MP SD,MP 0 SD,MP 0

2 1

1 2

 
= σ = σ  

 
C A I A  (29) 

The off diagonal elemants in the covariance matrix in Eq.(29) are not zero as in the 

case when only two receiver were used. This means that there are correlations 

introduced between the observations at single difference level in a multipoint solution.  
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2.3.3.2 Double differences 

To derive the correlation for the double differences we follow the same steps as we did 

with the single differences and starts with the case where only two receivers are used. 

The general matrix expression of the double differences can be formed as: 

 DD DD SD=Φ A Φ  (30) 

Where DDΦ is the vector with double differences and DDA the design matrix which 

describes the linear combination of the single differences in SDΦ . If the result from the 

single differences is used, Eqs. (25) and (27), the double differences can be described 

as: 

 

o
kmop

km p
DD DD SD kmoq

km q
km

1 1 0
      

1 0 1

 
   − 

= = =    −     
  

Φ
Φ

Φ A Φ Φ
Φ

Φ

 (31) 

One of the single differences is chosen as the reference. In this case we use the first 
o
kmΦ ,where satellite is used as a reference satellite. When choosing the reference 

satellite, it is preferable to chose one with a high elevation angle, since the influence of 

atmospheric error source, like the ionosphere and troposphere is at minimum. One can 

also expect that in most cases the risk of loosing the connection to the satellite, caused 

by buildings and natural objects, is lower at high elevation angles than at low.   

The covariance matrix of the DD can be derived, with the law of error propagation of 

covariance’s, in the same manner as in the case of single differences:   

 T
DD DD SD DD=C A C A  (32) 

resulting in 

 T 2
DD DD SD DD 0

2 1
2

1 2

 
= = σ  

 
C A C A  (33) 

The correlations between the observations in the double differences are evident when 

studying the off diagonal elements in the matrix in Eq.(33). 

2.3.3.2.1 Double differences in a multipoint solution 

As can be seen in Eq.(33) there are correlations between all double differences in the 

way here as in the case of multipoint single differences. The correlation between the 

observations will become even more complicated in the multipoint solution 

corresponds to the case of single differences. This is obvious when taking the 

multipoint correlation explained in Eq. (29) into account. We are not going to explain 
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the multipoint covariance matrices here, but instead we give a reference to Beutler et al. 

(1986). They describe how the multipoint covariance matrix can be formed both in the 

case when identical observations are made at all receivers and when it is not. The paper 

gives a general description with the same assumption as we did in Eq.(23), i.e. that all 

observations have the same variance. Since this is usually not the case, it is common to 

use one and the same satellite as a reference satellite. The reference satellite is selected 

according to minimum variance to minimise the variance in the DD combinations, 

since it is preferable to have at least one satellite with low noise level in each DD. 

One can not assume that common satellites are available in each epoch at all receivers. 

There might be obstacles that are blocking the signal at some of the receivers but not on 

the others. In the worst case observations to a satellite is only done at one receiver. In 

this case, the observation must be ignored in the double difference approach since it is 

impossible to generate any double differences.  

With a change in the observation scheme, the covariance matrix must be redefined. If 

another satellite than the reference is lost, it is quite simple to adjust the covariance 

matrix to the new situation, but in the case the reference receiver is lost, one need to 

create a complete new covariance matrix based on another reference satellite. In the 

dual receiver case it is rather easy to adjust the covariance matrix, but in a multipoint 

solution it becomes more complicated because of the correlation between the receivers.  

2.3.3.3 Correlation in time 

So far, the correlation has only been studied within one epoch. Usually more than one 

epoch are used when positions are determined with GPS. To connect them in time one 

need to construct a covariance matrix for all observations. In many applications one 

assumes that there is no correlation between the epochs. This gives the following shape 

of the covariance matrix where all of diagonal elements (matrices) are set to zero.  

 ( )

( )
( )

( )

1

2

n

C t 0 0

0 C t 0
C t

0 0 C t

 
 
 =
 
 
  

�

� �
 (34) 

This assumption holds, only if all the error sources in the observation equations are 

eliminated in the differencing procedure. Some of them are completely eliminated (the 

clock errors and the hardware delays), but there are still some parameters which are 

not, such as the troposphere, ionosphere, multipath and antenna phase centre variations. 

These parameters are unique for each receiver and they also depend on the observation 

site. Physical models for each of them have been developed to reduce as much as 
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possible of their influence as described in Chapter 3, but the models are not completely 

correct, so there will still be some errors left after they are applied on the observation 

equations. It is the time correlation for these remaining errors that will make the 

correlation equation Eq.(34) incorrect. The outcome of an incorrect correlation model 

will result in a non-optimal adjustment and wrong variances in the final result. 

2.4 Undifferenced solution 

There is a linear dependency in the phase observation equation between the clock 

parameters and the ambiguities. One way to eliminate these dependencies is to use the 

differential solution, which is done above but there is an alternative method based on 

raw phase observations called an undifferenced approach, where all the systematic 

errors are estimated independently of each epoch in a state vector. The method is 

usually called a state space model approach. 

The state space approach is based on the fact that all the parameters in the observation 

equation are independently correlated in time. Take as an example the satellite 

hardware delay. It has some kind smooth stochastic process in time and would not 

make large jumps from epoch to epoch.  

1t 2t nt
 

Figure 4. Parameter values are normally changing smoothly during time and do not make 

any sudden jumps 

With this knowledge about the stochastic processes it is possible to create a model for 

each error parameter that describes how the parameter is expected to change from 

epoch to epoch. Most of the unknown parameters in the raw observations Eq.(14) have 

both a stochastic and a deterministic part. The deterministic parts are the same as have 

been used in the double differenced approach and are removed from the observations 

before the estimation of the stochastic part. In the undifferenced approach is it directly 

the parameter between a receiver and a satellite that are estimated and no correlations 
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are therefore introduced. The number of unknowns in the state vector depends on the 

number of receivers, the number of modelled parameters and the number of 

observations at each receiver. Further more, the undifferenced approach will not cause 

any problem when the actual observations at each receiver vary as is the case when 

using double differences. In the former case, if a satellite is observed only at one 

receiver, then additional unknown parameters will be added to the state vector.  

The estimations of the parameters is, in this report, based on a Kalman filter, which is a 

sequential filter technique that takes into account the dynamics of the parameters. The 

Kalman filter estimates the state space parameters by considering the states of the 

parameters between observation epochs, and it uses the appropriate stochastic 

processes to update their variances. The Kalman filter is explained in detail in Section 

3.1 together with the deterministic and stochastic models of each unknown parameter.  

2.5 Double differences vs. undifferenced data 

The two most important observables are described in the earlier sections, are 

undifferenced GPS observations and the double differenced observations. In this 

section we compare the methods in discussing their advantages and disadvantages.  

We start with the double differences, where several observations are used to eliminate 

the unknown clock errors and hardware delays in the satellites and receivers. The 

elimination implies that parameters are completely erased from the observation 

equation. By doing this all time dependent correlations are removed, and it becomes 

impossible to model the time dependent stochastic process which each independent 

parameter actually has. This can be seen as a problem, but it gives some advantages as 

well. One of them is that the double differences becomes independent at each epoch 

without any time correlations and when several epochs are used together in an 

adjustment one can use the assumption with no correlation between the epochs as in 

Eq.(34). This assumption is correct if all the other site dependent parameters, like the 

ionosphere, troposphere, multipath and antenna parameters, are completely removed in 

the same manner as the time parameters. However, even if very accurate deterministic 

models are used to eliminate the site dependent influence of each parameter in the 

observation equation, there will still be some influence left since the physical 

conditions vary at each receiver position. This means that the assumption in Eq. (34) 

will be incorrect, since the correlations between the epochs are incorrectly modelled, 

and a loss of information is unavoidable. It should be noted that if the receivers are 

placed within a few kilometres from each other and at the same level of height, then the 

influence of the remaining ionosphere and the troposphere parameters will become 

very small and insignificant. A problem with the double differencing procedure is also 

that some observations will be lost, because the observations that are measured to 



 23 

satellites that are only visible at one receiver will be lost. Another problem with the 

differencing process is the complexity of rearranging the covariance matrix, especially 

in the multipoint situation, when the number of observations is changing at the 

receivers from epoch to epoch. This procedure is, according to Beutler et al. (1987), 

quite time consuming.  

In the undifferenced approach are all unknown parameters in the observation equations 

are estimated each epoch with a Kalman filter. Models are used to remove the 

deterministic part of each parameter and the remaining part is assumed to be stochastic 

and estimated each epoch in a state vector by the filter. It is important, in this approach, 

to model the time correlation of each parameter correctly so it represents the true 

stochastic nature of the estimated parameters. This is one of the main challenges with 

the undifferenced approach. A true benefit with the undifferenced approach is that all 

observations can be used. There are no limitations as in the other approach where the 

same observations have to be done at the receivers. One of the most important 

advantages with the multipoint solution is that observations from several receivers can 

be used simultaneously and easily without any complicated correlations as is the case 

of double differences. Since one of the goals with this project is to use several reference 

receivers in a multipoint solution and considering the benefits of the undifferenced 

approach we continue to study how a general model for this approach can be formed. 

This is done in the following chapter.  

It should be mentioned that the Kalman filter approach can also be used in the double 

differenced approach, but it is much harder to determine the time correlation for the 

unknown parameters since they are a combination of four observations.  
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3 The Model 

There are several different methods which can be used to estimate parameters in real-

time i.e. the Kalman-filter and sequential least squares adjustment. Both these methods 

are based on the same algorithm but the Kalman-filter gives the possibility for each 

parameter to dynamically change in time, which not the sequential least squares 

adjustment do. This is the reason to why the Kalman-filter has become so popular 

within surveying applications. Jansson (1998) i.e. used the Kalman-filter to improve the 

precision in real-time kinematic positioning.  

This chapter starts with an explanation of the discrete Kalman-filter algorithm and we 

continue with an explanation of each of the additional error parameters. In the last 

section of this chapter the complete state space model for undifferenced positioning 

with GPS is summarised.  

3.1 The Kalman filter 

GPS-receivers can be programmed to perform observations in discrete time intervals 

(epochs). The observations can be seen as a sample of a continuous time process. The 

complete set of observations at an epoch k can in linearised matrix notation be written 

as  

 k k k k= +L H X εεεε  (35) 

where the vector kL contains the observations, kH is the design matrix, which relates 

the unknowns in the state vector kX to the observations, and kεεεε is the observation 

errors. Which parameters that are found in the state vector for each GPS receiver 

depends on if the receiver is a reference or a rover receiver. More about how each 

parameter in the state vector is modelled is found in Section 3.2. Common for all the 

parameters in the state vector is that they all have some kind of correlation in time, i.e. 

in other words they each represent a dynamic process which can be linearly represented 

by a first order differential equation (the state space model):  

 ( ) ( ) ( ) ( ) ( )t t t t t= +x F x G u�  (36) 

where x is a state vector, x� its time derivate, F is the system dynamic matrix, G is the 

coefficient matrix of the random forcing function u, which elements are white noise. 

Without any further information, the parameters in the state vector would follow the 

path described by their differential equations. But, if observations are available (related 

to the parameters in the state vector) the state variables can be updated. This is the 

basic idea behind the Kalman filter and to make it “fit to use”, one must convert it from 

a time continuous process into a discrete process.  
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The discrete Kalman filter is a recursive algorithm that can be described in two steps. 

The first is a prediction step, where the state vector and its covariance matrix are 

predicted from one epoch (k) into the next (k+1). In the second step, the predicted 

parameters are blended with the observations in epoch (k+1) in a least squares manner. 

The following derivation of the discrete Kalman filter is only an overview a complete 

derivation is given by Brown and Hwang (1997). 

3.1.1 The prediction step 

The prediction step is based on the homogeneous solution of the differential Eq.(36), 

which can be written as  

 

k

k 1

k 1 k 1,k k k 1,

k

ˆ ˆ d

+
−
+ + += + ∫

w

x T x T G u

�������
τ τ τ τ  (37) 

where kx̂  is the state vector at epoch k and k 1
ˆ −

+x the predicted state vector at epoch k+1. 

Matrices with the superscript “^” denote estimated values and “-“denotes predicted 

parameters. k 1,k+T is the transmission matrix from epoch k to k+1 and u the forcing 

function. The integration at the end of Eq.(37) is the driven response, which is the 

integrated noise during the time interval between two epochsdτ . It contains the total 

change in the transmission matrix, coefficient matrix and the forcing function, in the 

continuous case. In the discrete case this integration is summarised in the matrix kw , 

which contains the total integrated value of the system noise in the predicting 

procedure. kw  is the parameter that constitute the difference between the Kalman-filter 

and the sequential least squares adjustment. In the sequential least square adjustment 

is kw equal to zero for all parameters. 

The following assumptions are done concerning the correlations in observations and 

the state vector parameters in the Kalman-filter algorithm: 

• All observations are uncorrelated within a epoch. 

• All parameters in the state vectors are uncorrelated both within one epoch and 

in time. 

• There is no correlation between the driven noise of the process and the 

observations.  

Some comments to these assumptions are necessary. The fact that all observations are 

uncorrelated within an epoch is a quite usual assumption in least squares adjustments 

since it is very difficult to derive the correlation but the between epoch assumption is 

directly contradictory with the earlier description of the undifferenced approach. But 
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the assumption holds, since the correlation between the epochs is modelled by the 

differential equations. The second assumption, that the parameters in the state vector 

are uncorrelated, makes it easy to predict a state vector from one epoch to the next, 

with Eq.(37), since the matrix kw then becomes random noise with zero mean, and it 

has no influence on the prediction at all.  

Along with the estimated state vector belongs a covariance matrix. This is also 

transformed from one epoch to the next with the following equation 

 
T

x,k 1 k 1,k x,k k 1,k k
−

+ + += +Q T Q T Q  (38) 

where x,kQ and x,k 1
−

+Q  are the covariance matrix at epoch k and the predicted 

covariance matrix for epoch k+1. kQ is the covariance matrix of the system noise, and 

T is the same transmission matrix as in Eq.(37). The transmission matrix can be formed 

by solving the following differential equation. 

 k 1,k k k 1,k+ +=T F T�  (39) 

with the following starting condition k,k =T I . If the transmission matrix is considered 

as constant during the time of interest, the differential equation has the solution of an 

exponential function of the transmission matrix, which can be expressed in Taylor-

series as 

 
( ) ( )2 3

t
k

t t
e t ...

2! 3!

∆ ∆ ∆
= = + ∆ + + +F

F F
T I F  (40) 

Where t∆ is introduced as the fix time interval between two epochs. The exponential 

function implies that the correlation in time between the parameters in two state vectors 

is reducing exponentially.  

The covariance matrix kQ of the system noise kw , can be expressed as: 

 ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

T

k k k

k 1 k 1

T T T

k k

k 1k 1

T T T

k k

E

E k 1,s s s t t k 1, t dt ds

k 1,s s s t t k 1, t dt ds

+ +

+ +

 = = 

 
+ + = 

 

 + + 

∫ ∫

∫ ∫

Q w w

T G u u G T

T G E u u G T

 (41) 

where 

 ( ) ( )TE s t  = u u Q  (42) 
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Q is a diagonal matrix containing power spectral densities (PSD) of the process forcing 

function u. Using equation (40), the solution of the integral (41) can be approximated 

by following expansion, Farrell and Barth(1999, p. 86). 

 

{ } ( )

( )

( ) ( )

2
T T

k k k G G G

3
2
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∆
= ≈ ∆ + + +

∆ + + + +  

∆ + + + + +  

Q w w Q FQ Q F

F Q FQ F Q F

F Q FQ F F Q F Q F …

 (43) 

where 

 T

G =Q GQG  (44) 

The power spectral density functions actually express how much the variance of each 

parameter in the state vectors can change from one epoch to the next. 

3.1.2 The filtering step 

After the prediction step follows the filtering step, also called the update step by 

Sjöberg (2005), where the predicted parameters k 1
ˆ −+x , from the previous epoch, are 

updated with the optimal combination of the difference between the observations 

k 1+L
 and a “set of observations” that are generated with the predicted parameters k 1
ˆ −

+x . 

The generated observations are created by using the direct functional relationship 

k 1 k 1
ˆ( )−

+ +h x  described by the observation equations in Eqs.(13) and (14), which are 

presented slightly modified in Chapter 4 . The superscript “~” is introduced to indicate 

measured values. The general equation for this procedure is given by: 

 k 1 k 1 k 1 k 1 k 1 k 1
ˆ ˆ ˆ( )− −

+ + + + + + = + − x x K L h x
  (45) 

A blending matrix k 1+K , also called the Kalman gain matrix, is introduced in the 

equation. This is derived from the theory of recursive parameter estimations where no 

correlations between the state vectors in the epochs are expected.  

 
1

T T

k 1 x,k 1 k 1 k 1 k 1 x,k 1 k 1

−− −
+ + + + + + + = + K Q H R H Q H  (46) 

Where k 1+R  is the prior variance-covariance matrix of the observation noise kε in 

Eq.(35). Koch (1999 p.177) describes how this matrix can be derived so it will not be 

done here. He also derives the updating procedure of the covariance matrix  

 [ ]x,k 1 k 1 k 1 x,k 1

−
+ + + += −Q I K H Q  (47) 
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which includes the predicted covariance matrix x,k 1

−
+Q , see also Sjöberg (2005 Sect. 

12.1). 

3.1.3 Summarising of the Kalman filter 

The Kalman filter can be summarised in the following steps. The first step is an 

initialisation step. This is needed since the dynamics of the state vector parameters are 

described with first order differential equations. In the second step the state vector and 

its covariance matrix are propagated from the previous epoch to the current by the use 

of transition matrices. In the third step is the Kalman gain matrix determined and the 

fourth along with the fifth step conclude the algorithm by updating of the predicted 

state vector and its covariance matrix into the current epoch.  

 

1. Initialisation: 

 0 0 x0 0
ˆ E[ ], var[ ]− − −= =x x Q x  (48) 

2. Time propagation 

 T

k 1 k 1,k k x,k 1 k 1,k x,k k 1,k k
ˆ ˆ ,− −

+ + + + += = +x T x Q T Q T Q  (49) 

3. Gain calculation 

 
1

T T

k 1 x,k 1 k 1 k 1 k 1 x,k 1 k 1

−− −
+ + + + + + + = + K Q H R H Q H  (50) 

4. Measurement update 

 k 1 k 1 k 1 k 1 k 1 k 1
ˆ ˆ ˆ( )− −

+ + + + + + = + − x x K L h x
  (51) 

5. Covariance update 

 [ ]x,k 1 k 1 k 1 x,k 1

−
+ + + += −Q I K H Q  (52) 

The Kalman filter is an iterative procedure, once started with an initialisation in step 1 

it will continue with a loop through step 2 to 5 during each observation epoch.  

3.2 Parameter modelling 

The deterministic and stochastic models are described in this section for all the 

unknown parameters in the observation equations. The deterministic models are used to 

remove the deterministic part of each unknown parameter, and the stochastic models 

describe the stochastic nature of the remaining difference between the true value and 

the deterministic model. In the observation equations all known values are moved to 

the left side of the equal sign. The deterministic values are assumed to be known values 

and therefore moved to the left side in the observation equations. The updated 

observation equations are presented in Section 3.3. The presentation of unknown 

parameters starts with position and velocity and thereafter follows each of the other 
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parameters covering; the receiver clocks, the atmospheric delays, multipath and finally 

the common errors.  

3.2.1 Position and velocity 

Both for relative and single point positioning, it is necessary to compute the geometric 

distance s

A A(t )ρ , which is given by the following equation: 

 ( ) ( ) ( )2 2 2
s s s s

A A A,e A,e A(t ) X X Y Y Z Zρ = − + − + −  (53) 

where ( )s s sX , Y ,  Z  are coordinates of satellite s at emission time s

Gt  and A,eX  and 

A,eY are receiver coordinates corrected for the Earth rotation during the signal travel 

time st∆ : 

 

s

A,e A e A

s

A,e A e A

X X Y t

Y Y X t

 = −ω ∆


= +ω ∆
 (54) 

To be able to use standard linear least squares adjustment, Eq. (53) has to be linearised: 
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ρ = ρ + ∆ + ∆ + ∆ +

∂ ∂ ∂
 (55) 

where X∆ , Y∆ and Z∆  are the difference between approximate coordinates A,0X , 

A,0Y , A,0Z  and the true coordinates and the respectively derivatives are:  
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∂ ρ

 (56) 

also based on the approximate coordinates.   

For the monitoring applications, it is reasonable to assume that the points are moving 

slowly. Therefore, this motion can be kinematically modelled as constant velocity 

model (PV model). In the case of the position-velocity model we assume that the GPS 

antenna is moving with a constant velocity and that the velocity vector is changing 

randomly, i.e. the velocity is modelled as a random-walk process. This yields state 

vector for one receiver A: 

 [ ] [ ]TPV,A A A A A A XA YA ZAX Y Z v v v= =X X v  (57) 
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with the dynamic model: 

 A A

A a

=

= +

X v

v 0 u

�

�
 (58) 

and the covariance matrix  

 ( ) ( )
aX

T

a a a aY

aZ

q 0 0

E s t 0 q 0

0 0 q

 
   = =   
  

u u Q  (59) 

where q is noise spectral amplitude. The unit of q is ( )22m s Hz . 

The dynamic matrix PV,AF  for the PV model together with the coefficient matrix 

PV,AG and the random forcing function a,Au are:  

 

ax

PV,A PV,A a,A ay

az

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0
u

0 0 0 0 0 1 0 0 0
, , u

0 0 0 0 0 0 1 0 0
u

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

   
   
     
     = = =     
         
   
      

F G u  (60) 

Please note, that we estimates position and velocity only for rover receivers since these 

receivers are assumed to be in motion. The coordinates at the reference receivers are 

held fixed. There should always be at least one reference receiver in the network. 

Since, in the case of our PV-model, n , n 2= ≥F 0 , the process noise covariance matrix 

will become exactly: 

 ( )
2 3

T T

k G G G G

t t
t

2 3

∆ ∆
= ∆ + + +Q Q FQ Q F FQ F  (61) 
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and the transition matrix for the position and the velocity is given by: 

 PV,A PV,A

1 0 0 t 0 0

0 1 0 0 t 0

0 0 1 0 0 t
t

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

∆ 
 ∆ 
 ∆

= + ∆ =  
 
 
 
  

T I F  (63) 

where t∆ is the time period between two epoch. 

3.2.2 Receiver clock 

The nominal time At in a receiver A is related to true GPS time as described in Eq. (2). 

The clock delay Aδt is not constant in time, it develops as the integral of the frequency 

error of the clock oscillator. The total clock delay can be described as a bias b,Aδt plus a 

drift parameter dr,Atδ .  

 A b,A dr,Aδt δt t t= + ∆ δ  (64) 

How the bias and drift values varying in time depends on the receiver design. Trimble, 

for example, does not correct the clocks until the drift offset is 1 millisecond. Leica, on 

the other hand, corrects the receiver clocks of their receivers instantly each epoch. To 

cover all types of receivers we solve this problem in two steps. First in each epoch a 

combined bias/drift value is estimated for the total receiver clock delay. This is done 

with the observations within in the epoch in a single point positioning algorithm using 

the linear model for point positioning with code ranges, described by Hoffmann-

Wellenhof et al. (2001, p.257-259). This algorithm is designed for positioning, where 
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both the coordinates and the receiver clock are unknown, which is the case at the rover 

stations. A small modification is introduced at the reference station where the 

coordinates are known from the beginning and the only remaining unknown parameter 

is the combined value of the bias/drift of the receiver clock. This value is treated from 

now on as a known parameter and moved to the right side of the observation equations. 

The estimated value does not remove the complete clock bias and drift, and the 

remaining part is estimated in the Kalman filter. Witchayangkoon (2000) recommends 

to model this part as a random walk process, which gives a slightly better result than 

modelling it as a white noise process. The dynamic model of the remaining receiver 

clock error Atδ is modelled with the following differential equation: 

 A t,At uδδ =�  (65) 

which is written at the general form as in  Eq.(36), with the following dynamic matrix: 

 t ,Aδ =F 0  (66) 

and the coefficient matrix t ,AδG : 

 t ,Aδ =G I  (67) 

The process noise vector for the remaining clock error is given by: 

 T

t,A t ,Auδ δ=u  (68) 

We model the process noise t ,Auδ as white noise with the covariance matrix  

 ( ) ( )T

t,A t,A t ,A t ,AE t t qδ δ δ δ = = Q u u  (69) 

The noise spectral amplitude amplitudes t ,Aqδ can be computed using Alan variance 

parameter 0h , (Brown and Hwang 1992): 

 t ,A 0q 2hδ =  (70) 

The numerical value of the bias part of the Alan variance parameters for a typical 

crystal clock used in the GPS receiver is: 

 19 2

0h 2 10 sec / s−= ×  (71) 

Since the parameter is modelled as a random walk process, the transition matrix 

becomes an identity matrix since the dynamic matrix in Eq.(66) is zero: 

 t ,Aδ =T I  (72) 

Inserting the coefficient matrix t ,AδG , the covariance matrix t ,AδQ and the dynamic 

matrix t ,AδF into Eq. (43) we get the process noise covariance matrix  
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 k, t,A t ,AQ q tδ δ= ∆  (73) 

The equations above are developed for a single frequency receiver. If a dual frequency 

receiver is used where both frequencies are steered by the same clock, there can be a 

small difference between L1 and L2 channels due to hardware delays ( o,Atδ ). We model 

this difference as a constant offset in clock correction applied to L1 and L2: 

 A,L2 A,L1 o,At t tδ = δ + δ  (74) 

The offset o,Atδ  is modelled as a random constant for which the process forcing 

function is zero and the dynamic process of the offset can be described by the 

following differential equation: 

 o,A o,At u 0δ = =�  (75) 

The dynamic matrix toδF will only contain zeros since the constant offset do not change 

during the time between the epochs. Coefficient matrix toδG and the dynamic 

matrix toδT are both identity matrices as: 

 to toδ δ= =G T I  (76) 

Since the dynamic matrix toδF only contains zeros and the forcing random noise o,Au  is 

zero, the process noise covariance matrix will also become zeros: 

 k, toδ =Q 0  (77) 

when Eq.(43) is used. 

3.2.3 The Atmospheric delays 

The GPS-satellites are transmitting signals at an approximate altitude of approximately 

20200 km above mean sea level. All the signals that reach a receiver placed on earth 

have passed the atmosphere and have been affected by it. The atmosphere is usually, in 

GPS-related topics, divided in two parts, an ionized and a non ionized part, according 

to the presents of charged particles. The ionized part is normally called the ionosphere 

and the nonionized the troposphere. The naming is a rather rough generalisation since 

each name is just the name of one of many layers with the same influence on the 

passing signals i.e. the ionized part that we call the ionosphere normally contains of 

both the ionosphere and the protonosphere, but since both of them has the same 

influence on the passed signals they are gathered under one name.  

Subsequent sections give a general description of how the atmosphere influences 

passing signals and how they are modelled in our Kalman filter.  
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3.2.3.1 Ionospheric delay 

The ionized part of the atmosphere starts at an approximate height of 80 km above sea 

level. Ionization in the atmosphere is caused by UV and X-radiation from the sun. All 

gas molecules that are exposed for the radiation are heated and electrons are liberated 

from them in a process called photo-ionization. Both the ionized molecules and the 

electrons are charged particles which influence the propagations of radio waves but it is 

mainly the electrons that influence the radio. The ionization rate depends on the density 

of the gas and intensity of radiation. At low altitudes, where the gas is denser, the 

charged particles will be recombined rapidly into neutral molecules. Therefore is this 

part of the atmosphere almost free from ionized molecules and called the neutral 

atmosphere or troposphere. On higher altitudes, where the gas has a lower density, the 

time before a collision with another particle is increased. Thus, the gas will be full of 

charged particles which influence the passing signals. The amount of charged particles 

will increase with higher altitude up to approximately 350 – 400 km where it starts to 

decrease. This is mainly because that the density of the gas becomes so low at this 

altitude that even if the ionization of the molecules are more or less total the amount of 

charged particles are so low that it will not influence a passing signal. The total amount 

of electrons in the atmosphere is usually measured in total electron content (TEC) 

which represents the number of electrons along the signal path from the satellite to the 

receiver with the size of one square metre.  

The radiation depends also on factors as the geomagnetic latitude, time of day, 

ionospheric storms. The earth magnetic field of the earth influences incoming radiation. 

The amount of electrons in the atmosphere is higher in the polar areas and at the 

equator than at latitudes in between them. This implies that the position on earth is one 

essential factor. The time of day is another factor that influences the radiation. Directly 

at sunrise starts the ionization process in the atmosphere and it continues to increase 

until approximately 14:00 local time according to Klobuchar (1987), then it starts to 

fade until the next sunrise. The radiation does not only have a diurnal variation it also 

has a long time variation.  UV radiation from the sun is changing with regular pattern 

which coincide with the number of sunspots. The fluctuation has a period of 11 years 

and the last maxima were found during 2002.  

Besides the factors that directly influence the presence of particles due to photo-

ionisation the Sun ejects solar winds which are streams of high-energy particles. These 

winds affects the magnetic field of the earth and indirectly also the ionosphere. 

Sometimes, arises massive explosions on the surface of the Sun, Coronal Mass 

Ejections, which causes fluctuations of the geomagnetic field and quick changes in the 
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ionosphere, also called ionospheric storms. These storms are quite difficult to predict 

but luckily they are rare of occurrence. 

The ionosphere does not influence the code and phase observations in the same 

manner, code observations are advanced and the phase observations are delayed. 

Further, phase observations are delayed differently according to their frequency. E.g. 

Leick (2004, pp. 215-219), describes the concept of group and phase propagation 

through the ionosphere and points out that the ionosphere influences the higher 

frequencies less than lower. Following his derivation one can also see that the code 

advance and phase delay is equal in size but with opposite sign. 

There are some methods which can be used to remove or at least reduce the 

ionospherical influence. Klobuchar (2001) compares the efficiency of some of them. 

The result is summarised in Table 2. 

 

Table 2. Summary of the efficiency of different deterministic ionospherical models, 

Klobuchar (2001) 

Efficiency Type of approach 

0% No model 

50%  Ionospheric Correction Model Algorithm (ICA) 

75%  State of the art ionospheric models like the International Reference Ionosphere (IRI)  

90% Use Wide Area Augmentation System (WAAS ) ionospheric corrections 

99%  Use dual-frequency receivers 

In the first approach the ionospherical delay ignored totally. The size of an unmodelled 

ionospheric error can be at the size of 20-30 metres. The ICA model is designed by 

Klobuchar (1987) and it corrects approximately 50% of the ionospheric delay by 

estimating eight parameters. These parameters are included in the navigation message 

and available in real-time. More advanced models like IRI uses hundreds of parameters 

to estimate the ionospheric delay and they manage to model approximately 75% of the 

delay. A problem with this model according to Klobuchar (2001) is that it does not use 

any real-time data and they are therefore not appropriate for real-time applications. 

There are systems which estimate the ionospheric delay in near real-time, like the Wide 

Area Augmentation System (WAAS) in the USA and European Geostationary 

Navigation Overlay Service (EGNOS). In these systems are real-time observations, 

from a reference network of permanent GPS receivers, used to determine the 
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ionosphere delay among many other parameters. The corrections are distributed from 

geostationary satellites, thus to use these systems one must have receivers that are 

prepared to receive the signals and the satellites must be visible from the receiver 

position. The approach, which according to Klobuchar (2001) gives the best result, is to 

use dual frequency receivers. Observations from two frequencies can be used to 

eliminate 99% of the ionospherical delay.  

3.2.3.1.1 Deterministic mode 

We are using the ICA model, Klobuchar (1987), as deterministic model for the 

ionospheric delay. The main reason for this choice is that its parameters, are distributed 

in the navigation message in real-time. So is also the EGNOS parameters but they are 

only transmitted from the geostationary satellites and the coverage of these satellites 

are rather limited in the Nordic countries.  

The transmitted ICA parameters describe the diurnal curve of the ionosphere which is 

consisting of a cosine and a constant part. The cosine part representing the daytime 

variations and the constant part the night. Both amplitude and period of the cosine part 

is varying depending on the position on earth. ICA parameters are computed based on 

the output from an empirical model that describes the world-wide ionospheric 

behaviour. Each 10 day are the parameters updated in normal conditions but if the solar 

flux value changes largely during a five day period then are the parameters updated 

more frequently. 

The input parameters in this algorithm will be given here, the complete derivation can 

be found in Klobuchar (1987) and it is also described in ICD-GPS-200C (1999), the 

interface control document that describes the broadcasted messages. Beware the 

numerical example given in the former paper, does not give the right result, verified by 

correspondence with the author. The general ICA algorithm can be summarised as  

 ( )ICAI f , ,El,Az, IP∆ = φ λ  (78) 

where 

ICAI∆  Ionospherical delay 

Aφ  Geodetic latitude 

Aλ  Geodetic longitude 

El  Elevation angle to the satellite 

Az  Azimuth to the satellite 

IP The 8 distributed Ionospheric Parameters  



 37 

A typical example of how the ionospheric delay is changing diurnal, calculated by the 

ICA model, is presented in Figure 5.  
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Figure 5. Klobuchar correction model (ICA) calculated for a user position (lat: 58, long: 

12), to a satellite at elevation angle 40 deg and azimuth 210 deg. 

3.2.3.1.2 Parameter modelling 

When the values from the deterministic model is removed from the observations, we 

estimate the remaining parts of the ionosphere by creating one parameter for each 

observation,
s

AI , at the reference stations. These parameters are not constant in time and 

therefore they are being modelled as random walk processes with the following 

dynamic equation: 

 s

A I,AI u=�  (79) 

It is not possible to estimate the ionosphere delay at the rover stations since the 

coordinates are unknown. Instead we use the estimated ionospheres at the reference 
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stations and interpolate the ionospheric influence at the rover stations. The inverse 

distance between the rover and the reference stations are used as the weights in the 

interpolation algorithm as described in the following equation with several reference 

stations (A, B,…) and rover station C.  

 ( ) ( ) ( )1 s 1 s

AC A BC Bs

i,C 1 1

AC BC

d I t d I t ...
I t

d d

− −

− −

+ +
=

+ +…
 (80) 

The subscript i indicates that this parameters is interpolated from several stations.  

Matrixes IF , IT , IQ  and IG for two reference and one roving station will be of size 

( ) ( )2 nsat  x 2 nsat⋅ ⋅ , where nsat is the number of satellites (s = 1, 2,…, nsat), because 

there are ( )2 nsat⋅  parameters to be estimated, namely s

AI  and s

BI . (Provided that all 

receivers measure the same set of satellites). The subscript indicates that the matrices 

belongs to the ionospheric delays: 

 I =F 0  (81) 

The IT  and IG  matrices are identity matrices and the process noise covariance matrix 

are given by 

 ( )k,I I It diag q ,q ,...= ∆ ⋅Q  (82) 

where we assume that noise parameters Iq  are the same for all reference and rover 

stations. 

3.2.3.2 Tropospheric refraction 

The troposphere is a nondispersive media and has completely different properties than 

the ionosphere. It is found below the ionosphere, up to a height of approximately 50 km 

above mean sea level, and is one of the limiting error sources in GPS-positioning 

according to Mendes and Langley (1994). The troposphere influences all GPS-

frequencies in the same way and for that reason the size of its influence on a passing 

signal is directly related to the travelling distance trough the tropospheric layer. 

Tropospheric refraction is directly related to the amount of water that is mixed in the 

air. Temperature is one factor that influences the amount of water that can be 

moisturised in the air. Air with higher temperatures can hold more water vapour than 

air with lower temperatures. When the maximum of vaporised water is reach at a 

certain temperature one call this saturated air. Unsaturated air will always strive for full 

saturation, and when an unsaturated air meets a saturated they both will mix and diffuse 

in direction to the lower part reach full saturation. Further when the temperature is 

dropped in a saturated air the surplus will condensate until the saturation value is reach 

at the new temperature. The condensate will be transformed as rain, snow or hail 
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depending on the temperature and fall downwards towards the ground and will reach 

the ground if it does not reach another unsaturated air layer. The temperature and so 

also the amount of moisturised air changes both temporally and spatially, consequently 

becomes the troposphere quite unpredictable. What is known is that the temperature is 

lower at higher altitudes which results in a higher tropospheric influence at lower 

altitudes.  

To visualise how a signal is influenced one can divide the troposphere into an infinity 

amount of thin horizontal layers each with its own refractive index n. According to 

Snell’s law, a ray of light that is passing from one refractive index to another will 

change direction caused by the change of refraction. The path is bending when it passes 

through the troposphere. Further, the signal velocity will also change when the signal 

passes through layers with different refractive indexes. The velocity will be reduced in 

air layers with higher refractive indexes.  

The bending of the signal path usually is modelled by a mapping function m which 

gives the relation between a zenith delay and slant delay at different elevation angles. 

Equation (83) is an example of how a mapping function m is used to map the zenith 

tropospheric delay (ZTD) to the slant delay s

AT between receiver A and a satellite s 

which is found at elevation angle 
s

Ae above the horizon. 

 s s

A AT (t) ZTD(t) m(e )= ⋅  (83) 

To describe the time delay in the troposphere we return to the example with the 

horizontal thin layers and follow a signal through them along the zenith direction. Since 

the zenith direction is perpendicular to the horizontal layers, the incoming signal will 

not be bended, thus the only influence on the signal is caused by the delay. The total 

zenith tropospheric delay, T, can be expressed as an integral 

 ( ) ( )( ) ( )6

h h h h

ZTD n s ds ds n s 1 ds 10 N s ds

∞ ∞ ∞ ∞
−= − = − =∫ ∫ ∫ ∫  (84) 

where s is the distance, ( )n s  the refraction, both integrated over the zenith distance 

from height h to∞ . ( )N s  the refractivity, is normally introduced as a replacement 

of ( )( )n s 1−  in Eq.(84), scaled 610  times because the refractive index is very close to 

unity.  

Since the neutral atmosphere consists of both dry air and water vapour, the refractivity 

can be separated into two parts, one which contain the influence of the dry part dN and 

the other which contain the wet wN , first suggested by Hopfield (1969). 

 d wN N N= +  (85) 
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Approximately 90 % of the tropospheric refraction is represented in the dry part of the 

atmosphere and the remaining 10% from the wet part. The problem however is that the 

wet part is very unpredictable. The size of the dry part is approximately 2.4 meters at 

main sea level and 0-0.4 metres for the wet part. Thayer (1974) introduced a model to 

determine the refractivity given as 

 

d w

1 1 1d w w
1 d 2 w 3 w2

N N

p p p
N k Z k Z k Z

T T T

− − −= + +
����� ���������

 (86) 

which is related to partial pressure of dry air dp  and wet vapour air wp , with the 

corresponding compressibility factors 1

dZ−  and 1

wZ− , the absolute temperature T given in 

Kelvin. 1k , 2k and 3k  are empirically determined physical constants. The first two terms 

in Eq.(86) are related to the induced polarisation if air and water vapour molecules 

respectively. The third term depends is related to the permanent dipole moment of the 

water vapour molecules.  

Davis et al. (1985) propose an alternative division of the refractive index. Their idea is 

to split the refraction into a hydrostatic and a nonhydrostatic part instead of a dry and a 

wet. They did this by dividing the dry part in Eq.(86) as follow: 

 

( )

h w

1 1 1d w w
1 d 2 w 3 w2

1 1 1 1 1d w w w w
1 d 1 d 1 d 2 w 3 w2

1 1 1w w
1 d 2 1 w 3 w2

N N

p p p
N k Z k Z k Z

T T T

p p p p p
k Z k Z k Z k Z k Z

T T T T T

p pp
k Z k k Z k Z

T T T

− − −

− − − − −

− − −

= + +

= + − + +

= + − +
����� �������������

 (87) 

The difference from the previous refraction model is that the first part now has the 

refractivity of an ideal gas in hydrostatic equilibrium and easy to determine with high 

precision by directly measuring the total pressure p ( d wp p p= + ) at the observation 

site, instead of the partial pressure as in the previous model.  

The total slant delay between receiver A and satellite s in Eq. (83) can be rewritten for 

a hydrostatic and a wet part 

 s s s

A h,A h A w,A w AT (t) T (t) m (e ) T (t) m (e )= ⋅ + ⋅  (88) 

where s

Ae  is elevation angle of satellite s as viewed from station A. Subscript h denotes 

hydrostatic and w wet part of the troposphere.  
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In the subsequent sections the a priori model for the tropospheric corrections is 

described. Thereafter, the dynamic parameter models are described and finally the 

mapping functions. 

3.2.3.2.1 A priori models 

There are several models derived of the tropospheric delay during the years. Most 

famous models are derived by Hopfield (1969) and Saastamoinen (1972). Both the 

models take metrological data from the surface at the observation site into account. A 

problem with the metrological observations is that they are not a good representation of 

the total troposphere since they are influenced by surface layer biases which are 

introduced by micro-metrological effects. There are a priori models for both the 

hydrostatical and the wet part of the troposphere that only uses a limiting amount of 

metrological observations. A typical example of this for the hydrostatical delay is given 

by Davis et al. (1985): 

 
( )

0
hd

P
T 0.0022768

1 0.00266cos 2 0.00027H

 
=   − ϕ − 

 (89) 

Where 0P is the total atmospheric pressure at the centre of antenna at the observation 

site, ϕ  the geometric site latitude and H the height above mean sea level in kilometres. 

The uncertainties of this expression are according to the authors somewhere between 

0.5 and 20 millimetres per 1000 bar which is slightly better than Saastamoinen’s model 

which by the other hand gives a result on the millimetre level according to Mendes and 

Langley (1999) where this model where compared with radiosonde observations during 

a year at 50 stations placed all around the world. The denominator in Eq.(89) is always 

close to unity ( for reasonable weights) independent of the values of ϕ and H it is 

always close to unity. This means that the main influence on the tropospheric delay is 

left to the atmospheric pressure which is changing according to the observation height. 

The wet zenith delay has a more random nature since it varies according to the amount 

of water vapour in the air. Both Hopfield (1969) and Saastamoinen (1973A), (1973B) 

and (1973C), derive models for the wet part of the tropospheric delay. Both models 

where compared with several other models by Mendes and Langley (1999) to find a 

model that was useful for aircraft applications where metrological observations is 

rather difficult to perform. They used radiosonde observations to study the r.m.s. scatter 

of the models and they found that the size of the scatter where about 5 cm. They 

presented in the same paper an alternative slightly improved model of the zenith wet 

troposphere 

 wd wT 0.0122 0.00943p= +  (90) 
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This model where originally derived for aircraft applications where accurate 

observations of the wet partial pressure is rather difficult to determine. Instead they use 

data from form some standard model as the International Organisation for 

Standardisation Reference Atmospheres for Aerospace where values can be 

interpolated according to position and time of year. This model show the same result as 

the old models at low latitudes but about 1.6 times better at middle and high. And since 

it does not use any metrological data it is preferable in our applications.  

As mentioned before, we do no metrological observations at the observation site. To 

determine the deterministic part of the troposphere we use standard values for the 

metrological observations. In table 3 the metrological values that we use are listed, the 

values represent metrological observations at mean sea level. 

 

Table 3. Metrological standard values 

Air pressure 1013.25 hpa 

Temperature  + 20°C 

Relative humidity 50% 

3.2.3.2.2 Mapping function 

Mapping functions are used to map the zenith delay to the actual elevation angle to the 

satellite. Most of them are derived empirically by adopting equations to radiosonde 

observations. The mapping functions can be separated into groups by studying their 

input parameters. Some models use parameters from surface metrology measured on 

site location, like Ifadis (1986), others are based on geometrical parameters, like Niell 

(1996) and there are those, which are based on a combination of both geometrical and 

atmospheric parameters like Marini (1972). The atmospheric parameters makes the 

model more “difficult to use” while the pressure component is proved to be “weak”, 

Ifadis (2000). Therefore we have chosen to use the Niell mapping function since it is 

based only on geometrical parameters of the observation site and the date of year and 

no metrological observations are needed. Several authors like Ifadis (2000), Davis et al. 

(1985) and Mendes and Langley (1994) show that the Niell mapping function is very 

attractive since it can be applied at elevation angles down to 3 degrees above the 

horizon.  

In Niell mapping function is the same equation Eq.(91) used to determine both the 

hydrostatic and wet mapping function with slightly different parameters.  
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where a, b and c are determined from the following general equation: 

 0
p

DOY DOY
a( ,DOY) a a cos 2

365.25

− 
ϕ = − π 

 

  (92) 

In Eqs. (91) and (92) ϕ  is the latitude, ε is satellite elevation angle above the horizon 

at the observation site, DOY  is day of the year and h is the height above sea level in 

kilometres.  

The parameters ha , hb and hc are all empirically determined by adopting the equation to 

real radiosonde data measured at 25 stations spread all over the northern hemisphere. 

The values for each parameter can be found in appendix A.  

3.2.3.2.3 Parameter modelling 

The total deterministic tropospheric delay is determined with equation (88) and is 

subtracted from the observations. The hydrostatic a priori parameter determined by 

using Davis and Mendes zenith models for the hydrostatic and wet tropospheric delays. 

The deterministic zenith delay values are mapped to the corresponding slant delay 

using Neill mapping functions. Remaining unmodelled part of the tropospheric delay is 

now treated as a wet delay, mainly since the wet models are more unpredictable than 

the hydrostatic. At each reference station is the zenith tropospheric parameter modelled 

as a random walk procedure. The dynamic equation that is used for the wet delay w,AT  

at reference stations reads: 

 w,A T,AT u=�  (93) 

where the subscript w indicates that it is a wet delay and A represents the receiver 

name. The random part at the rover stations is determined by interpolation each epoch, 

just as for the ionosphere.  

 ( ) ( ) ( )1 1

AC A BC B

wi,C 1 1

AC BC

d T t d T t
T t

d d

− −

− −

+ +
=

+ +

…

…
 (94) 

where ACd corresponds the distance between the receivers A and C. The subscript i 

represent, as before, an interpolated parameter. Interpolated values are then mapped in 

to the correct elevation angle with the wet part of Niell mapping function. 
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The dynamic matrix TF for the zenith troposphere contains only zeros since it is 

modelled as a random walk procedure, which means that no dynamic change are 

introduced during the time between the epochs: 

 T =F 0  (95) 

The state vector contains the estimated parameters for the reference stations, in this 

case station A and B: 

 
T

T h,A h,BT T =  X  (96) 

TG  and transition matrix TT  will be identity matrix. The process noise covariance 

matrix are given by 

 k,T T Tt diag(q ,q , )= ∆ ⋅Q …  (97) 

It is reasonable to assume, that the noise parameters Tq are the same for all stations and 

all satellites. 

3.2.4 Receiver antenna models and multipath 

All observations that are measured with a GPS-receiver are related to the phase centres 

of the used antenna. The phase centres does not necessarily coincide with the physical 

centre of the antenna. It is changing with the frequency of the incoming signal, with the 

elevation angle, azimuth direction to the satellite and the local environment around the 

antenna. To overcome this problem are the GPS-antennas calibrated. Calibration can be 

done in both in absolute and relative mode. Wübbena et al. (1996) describes absolute 

calibration which GEO++ performs and Madler (2002) describes the relative 

calibration procedure that the National Geodetic Survey (NGS) USA uses. According 

to Madler (2002) errors up to 10 cm can be introduced to the estimated coordinates if 

the antenna corrections are ignored. The general trend right now is that one use 

absolute calibrated antennas in GPS-survey when high accuracy is wanted. The main 

difference between absolute and relative calibrations is that in the absolute calibrations 

the corrections are determined in both elevation and azimuth direction of the antenna 

and in the relative calibration only the elevation dependent corrections are determined. 

However we have implemented the NGS-antenna corrections in lack of calibrated 

antennas.  

An error parameter that also is dependent of the frequency, used antenna and elevation 

angle is the multipath. Multipath occurs when the signal bounces before it reaches the 

antenna. How the multipath influence can be reduced is discussed in the following 

sections, but before this is done are the NGS-parameters described together with an 
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algorithm that modifies the parameters so they can be used on an antenna orientated in 

an arbitrary direction.    

3.2.4.1 NGS antenna parameters 

The NGS antenna calibration procedure is based on relative observations at two points 

placed only a few metres from each other. At one of the points a permanent reference 

antenna is mounted and on the other, the antenna is placed which is to be calibrated. 

Both antennas are orientated to the magnetic north. The calibration procedure is 

divided into two steps: in the first step the antenna reference point (ARP) is 

determined, which is the constant offset between the physical and phase centre of the 

antenna, in each direction (North, East and Up). The phase centres for the L1 and L2 

channels do not coincide so one set of offset parameters are determined for each 

frequency. 

N

E

U

dE

dU

dN

ARP

Physical 

centre

 
Figure 6. The phase centre of an antenna does not always coincide with the physical 

centre. NGS determines the offsets to the antenna reference point ARP. 

In the second step the phase centre variations (PCV) are determined. These values are 

necessary since the phase centre is changing with the elevation angles to the satellite. 

NGS determines PCV values for elevation angels, from 10 to 90 degrees, with a step of 

5 degrees, for both satellite frequencies (L1 and L2). The result from the calibrations is 

summarised in a set of parameters. A template of these parameters is found in Table 4. 

The template starts with a header with a description of the tested antenna, how many 

different antennas that are used to determine the parameters and the date of the 

parameters. Thereafter follows the parameters for the L1 frequency, with one row with 

the ARP offsets and two rows with the elevation depending errors. After these rows 

follows the same set of parameters for the second frequency L2. 
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Table 4. Template for the NGS calibration parameters  

ANTENNA ID        DESCRIPTION                  DATA SOURCE (# OF TESTS) YR/MO/DY 

                                                                                 

 [north]  [ east]  [  up ]                                   | L1 Offset (mm) 

 [90]  [85]  [80]  [75]  [70]  [65]  [60]  [55]  [50]  [45]  | L1 Phase at 

 [40]  [35]  [30]  [25]  [20]  [15]  [10]  [ 5]  [ 0]        | Elevation (mm) 

 [north]  [ east]  [  up ]                                   | L2 Offset (mm) 

 [90]  [85]  [80]  [75]  [70]  [65]  [60]  [55]  [50]  [45]  | L2 Phase at 

 [40]  [35]  [30]  [25]  [20]  [15]  [10]  [ 5]  [ 0]        | Elevation (mm) 

A calibrated antenna has a complete set of values in the template. These values are used 

to determine distance corrections at different azimuths and elevation angles. Linear 

interpolation is used for values between the tabulated values. Eq. (98) is used to 

determine the corrections in a certain direction ,APCα ε  

 , Hor PCVAPCα ε = ∆ − ∆  (98) 

where 

 ( )Hor Ncos Esin cos∆ = α + α ε  (99) 

 PCV  Interpolated value∆ =  (100) 

α  is the azimuth and ε  is the elevation angle of the satellite, N and E are the North 

and East components respectively.  

3.2.4.2 Modification of the NGS antenna parameters 

The NGS antenna parameters are determined for antennas that are oriented towards the 

magnetic north but this is not always the case. In engineering applications the antennas 

are often mounted on a 5/8 inch bolt. If the thread on the bolt is not orientated so the 

antenna ends orientated towards the magnetic north some type of algorithm is needed 

to modify the antenna parameters so they are oriented towards the magnetic north. This 

can be done with an additional correction to the horizontal parameters in the antenna 

model. Eq.(99) is then rewritten as  

 ( ) ( ) ( )Hor cor corNcos Esin cos ∆ = α +β + α +β ε   (101) 

where corβ  is the additional horizontal correction, for which a value could be attained 

by using a simple compass. This additional correction changes ARP to the new azimuth 

as can then be seen in Figure 7. The maximal horizontal displacement of the ARP is 

found when corβ is 180 degrees. In this case the sign of the horizontal ARP components 

has changed into the opposite. 
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Figure 7. The ARP position changes when antenna is orientated in another direction. The 

worst case occurs when the antenna is orientated to south instead of the correct direction, 

to north. In this case the horizontal ARP values change sign. 

The direction of the maximum error and the size of the error can be found by 

differentiation of Eq. (101)according to the sum of the angles ( )corα +β .  

 
( )

( ) ( ) ( )Hor
cor cor

cor

Nsin Ecos cos
∂∆

 = − α +β + α +β ε ∂ α +β
 (102) 

Setting Eq. (102) to zero we get 

 ( )cor

E
tan

N

 
α + β =  

 
 (103) 

The maximum size of the horizontal error can be fund by using the second derivate 

Eq.(101) as, 

 ( )
( )

( ) ( ) ( )
2

Hor
HorMax cor cor2

cor

Ncos Esin cos
∂ ∆

 ∆ ε = = − α +β − α +β ε ∂ α +β
 (104) 

Rewriting Eq.(104) by transforming some sine and cosine expressions into tangent 

 ( )
( )

( )

( )
( )cor

HorMax
2 22 2

cor cor

E tanN
cos

1 tan 1 tan

 α + β ∆ ε = + ε
 

+ α +β + α +β  

 (105) 

 ( )
2 2

E
E

N N
cos

E E
1 1

N N

 
     = + ε 

    + +        

 (106) 
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 ( )
2

E
N 1 cos

N

   = + ε    

 (107) 

and we finally get an expression of the maximum size of the horizontal errors HorMax∆  

at different elevation angles 

 ( ) ( ) ( )2 2
HorMax N E cos∆ ε = + ε  (108) 

In Figure 8 an example is given of how large the distance error will become at different 

elevation angles if the NGS-parameters are used on an incorrect orientated antenna. 

The worst case is introduced in the figure when the antenna is orientated 180 degrees. 
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Figure 8. Distance error involved in L1, when the NGS antenna model is used on an 

incorrect rotated antenna (Leica AT 502). The minimum errors are found in zenith, which 

corresponds the straight line at elevation angle 90 degrees and the maximum errors are 

found at elevation angle 0 degrees and at azimuth 85.7 ± 180 degrees.  
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3.2.4.3 Multipath 

The GPS measurements are corrected for the phase centre variation with the use of the 

NGS-antenna models as described in the previous section. These corrections have 

different sizes depending on the azimuth and elevation angle for the incoming signal. 

Besides the influence of the antenna, there is another error source, multipath, that also 

is varying with the same factors. The combination of multipath and the remaining part 

that are left of the influence of the antenna phase centre bias can be treated as one 

parameter MPA for each station-satellite combination. The MPA effect is periodical 

and it repeat itself in the case of static antenna, as the satellite constellation repeats in 

one sidereal day (ca 23h 56min). This fact can be used if long observation series (more 

than 24 hours) are available. If we do not estimate MPA, then this effect directly affects 

the solution and its periodicity can be seen on the residuals. No stochastic process can 

describe the real MPA perfectly. If we try to estimate MPA by modelling it as a 

stochastic process, the residuals will contain the unmodelled part of MPA. These 

residuals can be stored in a look-up table for each satellite and its azimuth and the next 

day they can be used as “observed” MPA. The values in the table can be updated (re-

estimated) every day as a weighted mean from the previous and currently estimated 

value. The initial values in the look-up table of the MPA parameters can be set to 0, 

with a certain standard error (for example 1 cm for phase and 5 cm for code MPA). The 

idea is that the MPA parameters will be computed with fixed ambiguities after the 

measurement update in equation (51) as residuals: 

 k 1 k 1 k 1 k 1
ˆMPA ( )+ + + += −L h x
  (109) 

Where k 1+L
 is a vector with the observations that is modified with all the deterministic 

parameters described in this chapter and k 1 k 1
ˆ( )+ +h x is a function which uses the 

estimated parameter in the actual epoch (k+1) to determine estimated observations in 

the actual epoch. We do not use the traditional least square approach for determine the 

residuals that are given by Fan (2003, p94):  

 k 1 k 1
ˆ ˆ+ += −ε L Hx
  (110) 

Where ε̂ is the residuals and matrix H is the design matrix, which contains linearized 

components. We know the direct relation between the estimated parameters in k 1
ˆ +x so 

the estimated observations can be calculated directly by function k 1 k 1
ˆ( )+ +h x , which are 

based on a slightly modified version of the code and phase observation equations, 

described in Eqs.(140) and (141). 

These residuals are stored until the next day when they are added as known parameters 

on the left side of the observation equations. This algorithm is not yet implemented in 

our deformation monitoring software it is left for further work.  
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3.2.5 Common errors 

If the distance between two receivers is short one can assume that the signal slopes 

from one satellite to both receivers are close to parallel. All errors that influences the 

distance towards the satellite and that not are covered by the other error sources, 

introduced earlier in this section are modelled as common errors. Among these 

common errors are the following errors and phenomena included; the satellite 

positional error, the residual satellite clock error and tide earth. The satellite positional 

error and the satellite clock residuals are exactly what the parameter says and needs no 

further description. Tide earth is a geodynamical phenomenon where gravitational 

forces in the solar system, especially the moon, make the surface of the earth moving. 

The size of the earth tide may reach as much as 0.5 meters according to Fan (2001). If 

the receivers are placed near each other the size of the influence of the geodynamical 

phenomenon will become the same at both stations and thereby the error can treated as 

a common error. 

All the common parameters are modelled together in a random walk process, which can 

be described with the following dynamic equation. 

 s

oo u=�  (111) 

where ou  is the forcing function for the common errors. The subscript o indicates 

common errors. The dynamic matrix for a random walk process is: 

 o =F 0  (112) 

The transition and design matrixes will be identity matrixes: 

 o o= =T G I  (113) 

and the process noise covariance matrix for the common errors are given by 

 k,o o o ot diag(q ,q ,q ,...)= ∆ ⋅Q  (114) 

3.3 Updated observation equations and observation weighting 

The observation equations given in Eq. (13) and (14) will now be modified on the 

known side with the a priori values. Different observation equations are also derived 

separately for reference and rover stations since the number of unknown parameters are 

not the same. Position and velocity are only estimated at the rover stations since the 

reference stations are assumed to be fixed. This concerns also the atmospheric 

parameters, since they are interpolated from the values at the reference stations at the 

rover stations. 
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3.3.1 Updated observation equations at the reference stations 

The code observation equations for reference stations A are given by: 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )
( ) ( )

S S S S S

A,L1 A A A GD A,L1,P

S S S
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S S
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P t t c t T MPA t

I t T t APC t t c t

t I t T t o

α ε

−ρ + δ − −

− − − − −ρ + δ =

δ + + + + ε

�  (115) 

and 
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A,L2 A A A GD A,L2,P2

2

2
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f
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f
t t c t I t T t o

f

α ε

 
− ρ + δ − − 

 

− − − − −ρ + δ =

δ + −ρ + δ + + + + ε

�

�
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where on the left side of the observation equation we find the known values as the 

pseudorange observation S

A,L1P , S

Aρ  the true geometric distance, which is known at the 

reference stations, 
Stδ the group delay, S

GDT is the additional clock delay correction 

which is used on code observations, 
S

AMPA  the multipath delay, S

d,AI  the deterministic 

ionosphere, S

d,AT  the deterministic troposphere, ,APCα ε  the antenna phase centre 

corrections and finally the bias part of the receiver clock A,L1tδ . 

On the right side the unknown parameters are found as the drift error in the receiver 

clock dr,Atδ , the clock offset between the frequencies o,Atδ that occur in the dual 

frequency mode , the remaining part of the ionosphere S

AI and the remaining wet part of 

the troposphere w,AT , the common errors are found in
So , and, finally, the observation 

noise Pε . The constant c is the speed of light in vacuum. Subscript L1 and L2 

corresponds to the actual frequency, subscript d indicated a priori deterministic models 

derived in the previous sections. The observation equation for the code observations on 

the L2 frequency contains the same known parameters, but they are related to the L2 

frequency. Some of the terms are the same and can be connected between the 

frequencies by a scale factor ( )2 2

1 2f f .  

The analogous phase observation equations at a reference receiver are given by: 

 

( ) ( ) ( )
( ) ( ) ( ) ( )( )

( ) ( )

S S S S

A,L1 A k0 A A,L1,

S S S

d,A d,A , A A A,L1

S S S

dr,A L1 A,L1 A w,A L1,

t t c t MPA t

I t T t APC t t c t

t N I t T t o

Φ

α ε

Φ

Φ −ρ + δ −

+ − − − −ρ + δ =

δ + λ − + + + ε

�  (117) 



 52 

and 

 

( ) ( ) ( )
( ) ( ) ( ) ( )( )

( ) ( )

S S S S

A,L2 A k0 A A,L2,

S S S

d,A d,A , A A A,L2

S S S

dr,A L1 A,L2 A w,A L2,

t t c t MPA t

I t T t APC t t c t

t N I t T t o

Φ

α ε

Φ

Φ −ρ + δ −

+ − − − −ρ + δ =

δ + λ − + + + ε

�  (118) 

The phase observations are given by S

AΦ  and the additional parameter N is introduced 

as the unknown ambiguities andλ represents the wavelengths on the L1 and L2 

frequency. 

3.3.2 Updated observation equations at the rover stations 

The corresponding equations at the rover station C becomes for the code observations: 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )

S S S S S
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S S S S S
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α ε
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�  (119) 

and 
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And for the phase observations  

 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
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and 
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In the updated observation equations  (119) to (122) some new parameters are 

introduced. p

k0ρ  are the geometric distance between the satellite and a set of a priori 

approximate coordinates. These coordinates are needed since the observation equation 

is linearised and the true coordinates are unknown. New approximate coordinates are 

used each epoch based on the estimation in the previous epoch. The interpolated 

ionospheric and tropospheric delay is also introduced at the rover station as known 

parameters. On the unknown side of the observation equations are the coordinate 

deviations from the a priori coordinates estimated. Subscript d denotes as before the 

deterministic part, subscript i is introduced as the interpolated value, at the rover 

stations, of the ionosphere and the troposphere.  

3.3.3 Observation weighting  

In positioning with undifferenced observations, based on a Kalman filter, correct 

stochastic and functional models are needed both for the time dynamic process and for 

the observations. The functional and stochastic models for the dynamic process in the 

Kalman-filter are described in Section 3.1. Here, in this section we study different 

weighting schemes for the observations. The observations are assumed to be 

uncorrelated, thus the covariances for each observation is placed on the diagonal in the 

covariance matrix R. Typical factors that influence the GPS observation noise level is 

the receiver dependent noise, diffraction and multipath. Since these parameters vary 

during time, new weights are needed each epoch. 

The receiver dependent noise is related to the accuracy in the correlation procedure, 

which is performed in a GPS-receiver. In the correlation procedure the correlation is 

maximised between the receiver generated signal and the observed signal. The 

correlation can not become 100%, since the incoming signal is contaminated with 

noise. A rule of thumb says that the noise level of the signal is about 1% of the signal 

wavelength (Seeber, 1993 p.310). This implies that a phase observation would have the 

noise level of approximately 2 millimetres, the wavelength is about 0.2 metres, and 

about 3 metres for the code observations where the wavelength is 300 metres.  

Beside the system dependent noise there are other noise sources like diffraction that 

occurs when something blocks the true signal path between a satellite and a receiver 

but the signal still arrives to, and is recorded by the receiver, and multipath occurs 

when the signal bounces before it reaches the antenna. There are some similarities and 

some differences between diffraction and multipath that are useful to have in mind. 

Wanninger et al. (1999) summarises these in Table 5.  
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Table 5. Comparison: Diffraction and Multipath effects (Wanninger et al., 1999) 

 Diffraction Effects Multipath Effects 

 

Common 

features 

• Depends on local environment of receiving antenna 

• Repeats with identical satellite constellations and unchanged 

environment 

• No mitigation by relative positioning  

• The effects on coordinate estimation is reduced with increase 

of observation time (static observations) 

• In kinematic mode rapid changes of diffraction effects: 

mitigation by filtering 

Differences • No line-of-sight, only 

diffracted signal are 

received 

• Independent of signal 

frequency: geometry free 

linear combination are 

not affected 

• Maximum error; in the 

order of decimetres 

• Signal strength reduced  

• Superposition of direct 

and reflected (indirect) 

signals 

• Frequency dependent: 

detected in the geometry 

free combination 

• Maximum error 
i

4λ  

• Fluctuation in the signal 

strength 

3.3.3.1 Weighting methods 

The simplest method that can be used in observation weighting is to apply equal 

weights to all observations of the same type. A problem with this method is that it does 

not treat fact that the noise level is increased at lower elevation angles. The normal 

method to avoid this is to remove all observations to satellites that are visible below a 

certain elevation angle. The drawback of this approach is that the number of satellites 

becomes less which results in a poorer satellite geometry that also influences the 

positioning accuracy negatively.  

To avoid this, more sophisticated weighting methods have been developed. These 

methods use mainly two different quality indicators: elevation angle and signal-to-noise 

ration (SNR). All the factors (diffraction, multipath and receiver dependent noise) are 

influenced by the elevation angle according to Collins and Langley (1999). This makes 
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the elevation angle a good quality indicator which can be used for observation 

weighting. The other quality indicator, SNR, can be derived directly from each 

observation. The SNR is usually represented by the carrier-to-noise ratio (C/No) which 

is a normalised SNR value and represents the ratio of the power level of the signal 

carrier to the noise power in a one Hertz bandwidth. C/No values have a specific place 

in observation files given in RINEX-format.  

There are several different weighting models based on the above mentioned quality 

indicators. More or less all of them are based on least squares fitting of some kind of 

function onto double difference residuals. To determine reliable values of the unknown 

coefficients is a large set of observations needed with observations spread over the 

complete range of values for the actual quality indicator.  

For example, Jin and de Jong (1996) uses double difference residuals when they create 

a model of the weights with Eq.(123) that describes the relation between the double 

difference residuals
DDε̂ and the elevation angle E: 

 0

E

E

DD 0 1
ˆ a a e

 
−  

 ε = + ⋅  (123) 

where 0a , 1a  and 0E are coefficients that are depending on instrument brand and the 

observation type. With a large set of observations the coefficients can be estimated. 

The observation weights are determined by entering the current elevation angle E for 

the observation into Eq.(123). By squaring the result we get the a prior variance factor 

for the observation, which is placed in the a prior variance-covariance matrix R. This 

matrix is used to provide the observations with correct weights in Eq.(46). 

An alternative approach that also uses the elevation angle is presented by Wieser and 

Gaggl (2005): 

 
2

2 0
E 2

a
ˆ

sin E
ε =  (124) 

where E is the elevation angle and 
0a  a coefficient that are estimated empirically with 

the double difference residuals as mentioned before. In this equation one directly get 

the a priori variance factor that are placed into the variance-covariance matrix R. 

Hartinger and Brunner (1999) have derived a method that they call the sigma-e which 

is based on a similar equation but instead of the elevation angle they use the C/No 

values.  

 

C/ No

2 10

0 1
ˆ a a 10

 − 
 

εε = + ⋅  (125) 
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the coefficient
0a  is not presented in this paper; it is introduced by the same authors one 

year later, in Brunner et al. (2000). Again, this is a model that directly give the a priori 

variance factors that can directly be placed into the variance-covariance matrix. 

A comparative study of these models is done by Satirapod and Wang (2000) and they 

concluded that the weighting procedure based on C/No gives the best result. They also 

studied the C/No values from several receivers connected to the same antenna and they 

concluded the C/No values is receiver dependent but they show a similar pattern. This 

implies that one set of weighting coefficients are necessary for each receiver to 

determine the correct weights.  

The weighting model presented by Hartinger and Brunner (1999) shows a very good 

performance it reduces the residuals of the baseline component approximately 40 % 

according to their result. The research group within Engineering surveying and 

Metrology at the University of Graz have developed several improvements to the 

sigma-e model. Sigma-∆ where introduced Brunner et al. (2000) which is also based on 

the C/No values and sigma-F by Wieser and Brunner (2000) which is based on fuzzy 

algebra. The authors show that both these methods improve the result compared with 

the sigma-e method. 

To study how the performance is influenced when different weighting models are 

applied some tests will be presented in Section 6.3.3.   

3.4 Complete model 

Now when actual deterministic and dynamic models for the introduced parameters, we 

can summarise the matrices in the Kalman filter algorithm, described in Section 3.1.3. 

If we start with the time propagation matrix T we get the following matrix 

 

PV

t

T

I

MPA

o

AMB

δ

 
 
 
 
 

=  
 
 
 
 
 

T 0 0 0 0 0 0

0 T 0 0 0 0 0

0 0 T 0 0 0 0

T 0 0 0 T 0 0 0

0 0 0 0 T 0 0

0 0 0 0 0 T 0

0 0 0 0 0 0 T

 (126) 

where a time propagation matrix is introduced for each unknown parameter in the 

model. Following the same procedure, the complete matrix of the dynamic model F: 
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PV

t

T

I

MPA

o

AMB

δ

 
 
 
 
 

=  
 
 
 
 
 

F 0 0 0 0 0 0

0 F 0 0 0 0 0

0 0 F 0 0 0 0

F 0 0 0 F 0 0 0

0 0 0 0 F 0 0

0 0 0 0 0 F 0

0 0 0 0 0 0 F

 (127) 

The forcing functions u is given by; 

 [ ]Ta t T I MPA oδ=u u u u u u u  (128) 

and the design matrix of the forcing functions as G: 

 

PV

t

T

I

MPA

o

δ

 
 
 
 
 

=  
 
 
 
 
 

G 0 0 0 0 0

0 G 0 0 0 0

0 0 G 0 0 0

G 0 0 0 G 0 0

0 0 0 0 G 0

0 0 0 0 0 G

0 0 0 0 0 0

 (129) 

The state vector is given by the following matrix: 

 [ ]TPV t T I MPA o AMBδ=x X X X X X X X  (130) 

The modified observations are placed in a vector; each element in this vector contains 

the observations at stations A, B, C and so on:  

 
T

T T T

A B C ... =  L L L L
 
 
 
  (131) 

Together with the observations belongs a matrix R with the prior variance-covariance 

values for each observation: 

 
B

C

0 0

0 0

0 0

 
 
 =
 
 
 

AR

R
R

R

�

 (132) 

Since no correlation is assumed between the observations, this matrix becomes a 

diagonal matrix. 
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4 Details of Implementation  

The purpose with the software that we develop is to determine deformations in real 

time. We are in a phase of development and have for the evaluation purposes 

developed a post processing software so we can calculate the same dataset over and 

over again to evaluate different settings. The software is developed in object orientated 

Matlab code since Matlab has a lot of build in functions for matrix calculations and 

result presentation. The disadvantage with Matlab is the computational speed which 

directly makes it impossible to run the program in real-time applications especially 

when the computation load becomes high. In our program this scenario occurs when 

the number of receiver is high and if there are many satellites tracked by the receivers.  

The overview of the complete algorithm is summarised in Figure 14. The algorithm 

starts at the top of the figure with an initialisation procedure. After this the Kalman 

filter algorithm follows, which is repeated each epoch until all epochs are processed. 

The result, estimates of the unknown parameters in the state vector, is stored each 

epoch in a result file.  

The initialisation procedure contains three steps; first an initialisation file is read, which 

includes the start values of the unknown parameters in the state vector, filenames of 

observation, satellite orbit and NGS-antenna parameter files, the total content of the 

initialisation file is given in Section 4.2. In the second step these files are read and 

stored in the computer memory as variables. The satellite orbits are given in Receiver 

INdependent EXchange format (RINEX) if the orbits are broadcasted in the navigation 

message or in SP3 format in the case of precise orbits. The content in these files are 

slightly different and therefore is a module developed to generate “standard orbits”, 

presented by Horemuž and Andersson (2006), and it will be discussed in Section 4.1. In 

the final step of the initialisation is the Kalman filter initialised with start values from 

the initialisation file, 0
ˆ −x  and x0

−Q  are filled in. When these three steps are completed, 

the post processing program is initialised and ready to start.  

Before the Kalman filter is started, the first common epoch in the observation files is 

found, which makes it possible to use observation files with different start and stop 

epochs. The Kalman filter procedure starts in step 1 with reading the standard orbits for 

the current epoch and thereafter the observations from all the observation files. The 

observations are used to fill in the observation matrix L, the related design matrix H, 

the variance-covariance matrix R and to add and remove states in the state vector that 

belongs to satellites that are new or lost in the current epoch. When the sizes of all 

matrices are adjusted cycle slip detection algorithms are implemented. If a cycle slip is 

detected to a satellite the ambiguity value reinitialised with new values is calculated by 
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the cycle slip algorithm. More about the cycle slip detection is found in Section 4.4. 

After the cycle slip detection algorithm follows the Kalman filter prediction and 

updating. The last step of the filter loop is ambiguity fixing, which is entered if the 

filter has passed a certain number of epochs. The ambiguity fixing is based on the 

lambda method developed at the University of Delft and is described in Section 4.5. At 

the end of a loop in the Kalman filter the updated unknown parameters in the state 

vector are presented with their standard errors.  
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Figure 9. Flowchart of the complete post processing Kalman filter algorithm 

 

4.1 Read data files and generate ephemerides polynomial 
coefficients 

Some input information is needed in both the real-time and the post processing 

algorithms before the Kalman-filter can run. The real-time algorithms acquire that the 
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observations and broadcast observations be in real-time, but input values are needed 

about the antenna parameters, precise orbits and start values for the Kalman-filter 

estimates. In the post processing algorithms that we are using all observations are 

accessible before the algorithm is run. This section starts with an explanation about the 

input formats that we using for the observations, ephemerides, antenna parameters. The 

final part describes how we develop a general algorithm to calculate the satellite 

coordinates for both precise and broadcast ephemerides.   

4.1.1 Observation and orbit parameters in RINEX format 

The post processing program reads observations and orbital parameters defined in 

RINEX format v2.10. The data format is developed at the University of Bern and 

presented by Gurnter (2001). Separate file types are generated for observations and the 

navigation message.  

The observation file contains a header which includes information about the 

observation station, as point number, initial coordinates, height readings, antenna type 

and so on this is the field protocol for the instrument. After the file heading follows the 

observation data from each epoch as code pseudorange, phase and Doppler 

observations. The type of observations that are available is depending on the used 

instrument.   

The navigation file starts as well as the observation file with a header. In the header of 

the navigation file the parameters for the Klobuchar ionospheric model are found 

together with time correction parameters for the satellite clock. After the header, 

follows broadcasted parameters ephemerides for each GPS satellite which is a set of six 

parameters that describe the Kepler ellipse, three secular correction terms and six 

periodic correction terms. All the parameters in the broadcast navigation message is 

determined at the Master Control Station of GPS and are updated each second hour. 

The accuracy of the coordinates in the broadcast ephemerides are 160 centimetres (cm) 

and the time is given with an accuracy of less then 7 nanoseconds (ns) according to IGS 

(The International GNSS service). The satellite coordinates are determined each 

observation epoch with the algorithm described in by the document IDG-GPS-200C 

(1999). 

4.1.2 Precise ephemerides  

The precise ephemerides are calculated at IGS (International GNSS Service) and 

contain satellite coordinates with a sample interval of 15 minutes. The accuracy of 

these coordinates are depending on the type of precise ephemerides that are used. Ultra-

Rapid precise orbits are a set of real-time predicted parameters that has a coordinate 
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accuracy of 10 cm and clock accuracy of approximately 5 ns. This product is available 

trough the internet at the IGS web site and is updated each four hours. NGS offer also 

other datasets of the ephemerides as the final orbits that has a slightly better accuracy, 

less than 5 cm in the coordinates and less then 0.1 ns of the satellite clock. Satellite 

coordinates at an epoch t are determined by interpolation techniques like Lagrange 

interpolation. 

4.1.3 NGS antenna files 

For each receiver antenna file NGS antenna parameters are read in the format that is 

specified by Table 4. The offset parameters in these models are given in a north, east 

and up system and are transformed from the local coordinate system into WGS 84 and 

are applied directly to the calculated coordinates. The elevation dependent corrections 

on the other hand are applied directly to the observations.   

4.1.4 Generate standard ephemerides polynomial coefficients 

The broadcast ephemerides are represented by a set of Kepler orbit parameters with 

correction terms and the precise orbits are given by satellite coordinates with a sample 

interval of 15 minutes. The broadcast ephemerides are updated approximately every 2 

hours, and the predicted precise ephemerides are updated each 24 hours. The final 

precise ephemerides are not available in real-time, they are determined in a post 

processing procedure which uses observations from several days to calculate the orbits. 

The accuracy in the broadcast ephemerides is about 3 metres and 0.05 metre for the 

final post-processed coordinates.  

When broadcasted parameters are used to calculate the satellite coordinates, the 

standard algorithms are used, as described in document ICD-GPS-200C. In the case 

when precise ephemerides are used then are the satellite coordinates determined by 

interpolation in the tabular coordinates.  

Instead of using two different algorithms to determine the satellite coordinates, we have 

developed a general algorithm that is independent of the ephemerides input type 

implying that, both precise and broadcasted ephemerides can be used. The basic idea 

with the algorithm is to interpolate satellite coordinates, for a given epoch, from a set of 

polynomial coefficients that describes the satellite orbits. The polynomial coefficients 

form what we call the standard orbits. These are determined by fitting a polynomial of 

a certain degree, in a least squares sense, to satellite coordinates that are given in fixed 

intervals. The polynomial we use is given by:  

 ( ) n n 1

1 2 n n 1p t a t a t a t a
−

+= + + + +…  (133) 
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in which t is the time in seconds from the beginning of the time interval and 
na is the 

polynomial coefficients of order n. The time interval we use is 15 minutes, just as in 

precise orbits, and we call it tabular orbits. Broadcasted ephemerides are transformed 

into tabular orbits simply by calculating the satellite coordinates and clock corrections 

by the standard algorithm at the wanted time interval. The general real-time satellite 

calculation algorithm is given in Figure 10. 

 
Figure 10. General flowchart for calculating satellite positions  

When the algorithm is started the first thing that is done is to check if precise 

ephemerides (PE) are available. If the answer is yes, then the algorithm directly starts 

to calculate the standard orbits and if it is no then are the broadcasted ephemerides used 

instead, where an extra step is needed to create the standard orbits.  

 
Figure 11. Fit and validity intervals  
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If a polynomial is fit to equidistant data, oscillations can occur at the beginning and the 

end of the interval. This is a known problem in numerical analyses where these 

oscillations are called Runge’s Phenomenon (RP). To avoid RP the first and last part of 

the fit interval are removed and the remaining part is named the validity interval. In 

Figure 11 are validity interval and the fit interval shown for a 4 hour fit interval and a 2 

hour validity interval.  

A typical example of RP can be seen in Figure 12, where the difference between 

interpolated coordinates is compared with coordinates that are calculated with the 

direct formulas. The oscillations are obvious at the start and end of the 3 hour interval.  
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Figure 12. Runge’s phenomenon on a 3 hour fit interval  

A new set of standard orbits are calculated as soon as time has reached the end of the 

validity interval or if new ephemerides parameters are found.  

The performance of this algorithm is studied in Horemuz and Andersson(2006) and 

they found that optimal performance is obtained when a 4 hour fit interval is used 

together with a 2 hour validity interval and a maximum polynomial order is used, 

which in this case is 16.  
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4.2 Start values of unknown parameters 

Start values for each parameter in the state vector are given in the ini-file, together with 

values of their standard deviations and power spectral densities. Here follows an 

explanation of the start values and their standard deviation of each of the parameters.  

The start coordinates are taken from the header of the observation files. These 

coordinates represents a navigated solution and are given in the global reference system 

WGS84. The standard deviations of the coordinates are given in the local coordinate 

system at the observation site N E 10mσ = σ = and U 20mσ = . There is no power 

spectral density function needed for the coordinates in a position-velocity model 

applied in the Kalman filter. To use the standard deviations they must be transformed 

from the local coordinate system into WGS 84. The transformation is done with the 

same algorithms that are used for the antenna model.  

Initial value for the velocity is set to zero ( )N E UV V V 0m s= = = , and the standard 

error is set to N E U 0.001m sσ = σ = σ = . The power spectral density value describes 

the maximum change rate of the velocity, and it is set to 1 mm/ sqrt(sec), which is a 

rather exact value, but if the filter fast should converge towards correct coordinates we 

use this value. See the result in Section 6.1.1. 

The receiver clock bias and drift is determined each epoch in a single point positioning 

procedure and subtracted from the observations. The start value for the remaining clock 

error is set to zero at all receivers and the accuracy is limited to the accuracy of the 

estimation in the single point positioning. The remaining error is estimated with a 

random walk process. 

The ionosphere bias is estimated when dual frequency observations are measured at the 

reference stations. The deterministic part is determined and removed with the 

Klobuchar ionospherical model which removes approximately 50 % of the ionospheric 

model. The remaining part is estimated with start value 0 and a standard deviation of 5 

meters. The standard deviation of the start value is doubled in the case where no 

ionospherical parameters are found in the header of the navigation message.  

The deterministic model for the hydrostatic and wet part of the troposphere, modelled 

by Davis (1985) and Mendes and Langley (1999), gives a very good value of the total 

zenith tropospheric delay if the total air pressure and the wet pressure is known at the 

observation site. By using these models it is possible to assume that the start value of 

the zenith delay becomes zero. Accuracy of the observations is very high if the total 

and wet air pressure is measured at the observation site, approximately 5 centimetres. 

But since no metrological observations are made must the accuracy be adjusted up a 

bit. We have decided to upgrade the standard deviation value 10 times to 50 cm.  
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Initially the ambiguities are estimated with a geometry-free solution, which is 

explained more in detail in Section 4.4.3. The standard deviation of the estimated 

ambiguities for the geometry free solution is in that section derived to approximately 

10 cycles (under good conditions). It should be noted that the correlation between the 

estimated values in the geometry free solution is very high and therefore we have 

decided to increase the standard deviation to 20 cycles. 

The final start value is for the errors that are common for all receivers under the 

assumption that the receivers are placed relatively close to each other (a few 

kilometres).  Initial values can be computed using Eq.(13), after receiver clock 

computation, or they can be estimated together with clock error on reference stations. 

4.3 Fill in matrices L, H, R and Add/Remove states 

When the Kalman filter is initialised and standard orbits for the satellites are found and 

the observations read for the current epoch, it is time to fill in the observation matrix L, 

the design matrix H and the corresponding weight matrix R. The sizes of these 

matrices are directly related to the number of receivers, the number of satellites and the 

number of frequencies that are observed. To describe the sizes of the matrices let us 

denote: 

 nREF   - number of reference stations 

 nROV - number of roving stations 

 nREC - number of receivers 

 REC REF ROVn n n= +  (134) 

 

 nA,s - number of observed satellites on station A 

 nA,P1 - number of P1 observations on station A 

 nA,P2 - number of P2 observations on station A 

 nA,L1 - number of L1 observations on station A 

 nA,L2 - number of L2 observations on station A 

 nA,obs - number of observations on station A   

 A,obs A,P1 A,P2 A,L1 A,L2n   n   n   n   n= + + +  (135) 

 nobs - number of observations on all stations  

 obs A,obs B,obs Z,obsn n n n= + + +…  (136) 

 nobs,L1 - number of L1 observations 

 nTI - number of tropospheric parameters; (is equal to number of ionospheric 

    parameters) 
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 T REF obs,L1n n n= +  (137) 

The ordering of observations is per station, i.e. first shown are the reference stations 

with all observed satellites and then follow all roving stations. The observation vector 

for Z receivers as: 

 
obs

A,obs B,obs Z,obs

T

T T T

A B Z
n 1 n 1 n 1 n 1× × × ×

 
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 

L L L L
 
 
 
…  (138) 

where A, B,…,Z are the receivers. The observation vector for station A to the z 

satellites are given by: 
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a T b T z T

A A A A
 =  L L L L
 
 
 
…  (139) 

where each element is a matrix containing the actual observations modified with the 

deterministic parameters 
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Predicted observations are calculated by the direct functional relationship between the 

predicted parameters in the state vector and the observations k k
ˆ( )−

h x :  
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Take i.e. ( )s

A At
−ρ , which is calculated with Eq.(53) in the predicted coordinates and 

the satellite coordinates at time At . Another parameter that needs a further explanation 

isρ� which is the orthogonal projection of the satellite velocity vector onto the vector 

between the GPS-antenna and the satellite ρ . The velocity vector of the satellite e
v is 

expressed in e-frame (earth frame), obtained from standard orbits as the first derivative 

of the polynomial. ρ� is orthogonal projection of e
v  onto ρ : 
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 e cosρ = αv�  (142) 

where α is angle between e
v  and ρ , which is the scalar product of the vectors 

calculated as (Råde and Westergren 1998, p78): 

 
e

e
cosα =

ρv

ρ v
 (143) 

Inserting Eq.(142) to Eq.(143) we get the orthogonal projection: 

 
e

ρ =
ρv

ρ
�  (144) 

Continuing with the design matrix H for two stations and one satellite: 
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where each of the components in the design matrix will be given in the following 

equations for a reference station A, a rover station B and one satellite. Starting with the 

design matrix for the position velocity 
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thereafter follows the design matrix for the receiver clocks: 
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The order of clock parameters depends on the clock error Atδ and offset between L1 and 

L2 o,Atδ . 

The design matrix for the tropospheric delay is given by: 

 

T

T A,T B,T

T
1 1 1 1

s s s s

h A h A h A h A 1 1 1 1

d d d d
m (e ) m (e ) m (e ) m (e )

d d d d

0 0 0 0 1 1 1 1

− − − −

− − − −

 =  

 
 =  
  

∑ ∑ ∑ ∑

H H H
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where d are the distances between the stations. In the case the number of receivers are 

two, 1 1d d 1− − =∑ , but not if there are more reference stations. 

The design matrix for the ionosphere is given as: 

 
A,I

I

B,I

 
=  
 

H
H

H
 (149) 

where  
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And finally the design matrix for the common errors and the ambiguities:  
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4.4 Cycle slip detection 

When a GPS receiver is observing in phase mode, it records the fractional phase 

difference between the incoming phase and the generated phase observation and counts 

the phase shifts when the fractional phase switches from 2π  to 0. This is continued 

from that the instrument observation is started until it is stopped. If, by some reason, 

the signal between the receiver and satellite is lost the integer counter has to start over 

again, which causes a jump in the continuous count of phase shifts. These jumps are 

called cycle slips and they need to be detected to determine accurate positions. Sjöberg 

(2005, p.74) summarizes the reasons that cycle slips occur: 
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• An obstacle disturbance of the ray path 

• Too low signal-to-noise ratio (e.g. as a result of multi-path, ionosphere bias, 

large receiver accelerations, ect.) 

• Failure of the satellite oscillator 

All high precision GPS-based processes are sensitive to cycle slips and we need to 

determine new start values to the filter both in the case when the ambiguities are fixed 

and when they are unfixed. As explained earlier start values are determined with a 

geometry-free solution.  

The general procedure to detect the cycle slip is to study a time series of some kind of 

combination of observation that are less sensitive to disturbances than the raw 

observations. As can be seen in the observation equations, there are many sources that 

disturb the observations. In the following sections some observation combinations are 

presented which are used in our software to detect cycle slips.  

4.4.1 Single frequency phase / code combinations 

A combination of code and phase observations can be used to detect cycle slips in the 

case where only observations are measured on one frequency. The difference between 

the code and phase observation S

A,i,IR results in a value that is strongly related to the 

ionosphere and the ambiguities. This can be seen on the right side of Eq. (153).  

 S S S S S S

A A A A A GD R A,RR (t) P (t) (t) 2I (t) N cT= −Φ = − λ + + δ + ε  (153) 

where the new parameters on the right side of the equal sign are, Rδ that contains the 

multipath and S

A,Rε the measuring noise on the phase and code observations. The 

difference between the values of S

A,i,IR at epoch t and epoch t t 1= +  will become very 

small if the time between the epochs is short and if no cycle slips occurs during the 

time between the epochs. This conclusion can be drawn with the knowledge that the 

ionosphere and the multipath usually change very slowly in time and that the group 

delay is constant. The problem with this method is, according to Hoffmann-Wellenhof 

et al. (2001, p.208), that the noise level range of ±5 cycles, mainly caused by the noise 

level of the code measurements.  

4.4.2 Dual frequency phase combinations 

Cycle slip detection can be performed by differencing the phase observations of the 

two frequencies L1 and L2 as follows: 

 ( ) ( ) ( )
2

s s s s s s1
A A,L2 A,L1 L2 A,L2 L1 A,L1 A2

2

f
t t N N 1 I t

f
Φ Φ

 
Φ = Φ −Φ = λ − λ + − + δ + ε 

 
 (154) 
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where Φδ  and Φε is as above the multipath and the observation noise for the phase 

combination. The accuracy in the phase observations are higher than for the code 

observations so this method is a better method than the single frequency combination 

presented in the previous section. Based on the rule of thumb about the noise level 

introduced in Section 3.3.3 it is according to Hoffmann-Wellenhof et al. (2001, p.211) 

possible to determine cycle slips jumps up to ± 4 cycles when comparing the 

differences calculated at two subsequent epochs. The remaining problem with this 

method is to determine on which of the frequencies a cycle slip occurs. 

4.4.3 Geometry free solution 

The final approach that we are using in our software to detect cycle slips is the 

geometry-free solution, which is used when both types of observations is made on the 

L1 and L2 frequencies, here described as Leick (2004, p.244). In this approach, all 

observations are combined into a solution which given in matrix notation becomes: 

 

1,P 1,P1 GD

2,P 2,P2 f GD f 1,P

1, 1,1 1 1

2, 2,2 f 2 2

P cT 1 1 0 0

P cT 1 0 0 I

1 1 0 N

1 0 N

Φ Φ

Φ Φ

δ ε− ρ + ∆         
         δ ε− α α         = + +
         δ εΦ − λ
         δ εΦ −α λ             

 (155)   

where∆ is a parameter which includes the clock errors, and the tropospheric error and 

the scale factor between the L1 and L2 frequency ( )2f 1 2f fα = . This equation system 

can be written in matrix notations as follows: 

 = + +L AX δ ε  (156) 

where A is the design matrix, completely independent of the receiver-satellite 

geometry, therefore this solution is called the geometry-free solution. δ and ε are as 

before the multipath and the measuring noise vector and if they are ignored a solution 

to the equation system becomes 

 1−=X A L  (157) 

where all the estimated parameters in X except for the ambiguities are time dependent. 

The ambiguities remain constants until a cycle slip occur. Leick (2004, p.245), show 

that there is a high correlation between the parameters in X and to solve this problem 

one can use an additional matrix Z that de-correlates the parameters as follows:  

 =z Zx  (158) 

where Z is 
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0 0 1 1

0 0 1 0

 
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 
 
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The new parameters which are estimated after the transformation are  

 
T

1,P W 1 2 1I N N N N = ρ + ∆ = − z  (160) 

The new parameter WN  is the wide-lane ambiguity which has a standard deviation of 

0.25 cycles of WL  according to Sjöberg (2005, p.85) and is therefore a very good 

indicator of a cycle slip, but then again it is difficult to determine on which frequency 

the cycle slip occur since the wide lane ambiguity is a combination of the ambiguities 

on L1 and L2.  

4.4.4 Implementation of cycle slip detection 

All the presented parameters, that are introduced in the previous sections, to detect 

cycle slips, are implemented in our software. During a calculation, if one of these 

values exceeds three times their standard deviation a cycle slip is flagged and eventual 

fixed ambiguities are released. It should be noted that all the used standard deviations 

are based on the assumed noise level in the signal that are introduced in Section 3.3.3. 

Additional error sources influences the standard deviation and the possibility to detect 

cycle slips when real observations are used.  Investigations how to improve this 

algorithm is a subject for future research. 

4.5 Phase ambiguity fixing 

To reach high accuracy positions using phase observations it is necessary to determine 

the unknown ambiguities N which are present on the left side in the observation 

equations. Many different ambiguity fixing methods have been developed during the 

years, among them the Fast Ambiguity Resolution Approach (FARA) by Frei and 

Beutler (1990), the Least-Squares AMBiguity Decorrelation Adjustment (LAMBDA) 

by Teunissen (1994) and the “KTH-method” presented by Sjöberg (1997), (1998A), 

(1998B), (1999), Sjöberg and Horemuz (1999) and Horemuz and Sjöberg (2002). The 

goal with all of them is to find the optimal combination of fixed set of phase 

ambiguities (x) that minimize the residual between the fix and the float phase 

ambiguities ( x̂ ): 

 ( ) ( )T 1
ˆˆ ˆmin
−= − −xx x Q x x  (161) 
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where x̂Q is the covariance matrix of the float solution. Several different candidate 

solutions are tested by changing the fixed values in the vector x.  

One of the most successful methods is the Lambda method developed at Delft 

University of technology and introduced by Teunnisen (1994) and described by Jonge 

and Tiberius (1996). The LAMBDA-method has become a de facto standard within 

GPS surveying since it gives a good result and is time efficient. The time efficiency 

depends mainly on the low number of candidates of the fix solution that the method 

produces.   

The input variables to the Lambda-method are the float solution of the ambiguities that 

are estimated in a least squares estimation and the corresponding covariance matrix. 

The Lambda-method consists of three essential steps: in the first step the covariance 

matrix of the float solution is decorrelated to reduce the search space. In the second 

steo all possible candidates are determined and in the final are the ambiguities fixed.  

We use a Matlab algorithm for the Lambda method that is developed by Joosten 

(2001).  The input parameters that we use in the Lambda method are the ambiguity 

parameters in the state vector k

−
X  and the corresponding part of the covariance 

matrix XQ . The algorithm returns two alternative solutions of the ambiguities, the best 

and the second best solution. To check the strength of the solution we check the ratio 

between the best and second best solution from Eq.(161) as:  

 2nd  best

best

min
3

min
>  (162) 

where 2nd  bestmin and bestmin  are the quadratic form of the second best and the best 

solution. If the ratio between the solutions fulfil the condition in Eq.(162), the 

ambiguities are fixed, otherwise they are kept unfixed until the next epoch where a new 

ambiguity fixing algorithm is performed.  

4.6 Output parameters, standard errors 

The main purpose with the software we develops is to detect deformations. To optimize 

its performance we have designed the software so that it is easy to change its 

parameters. The parameters and the start values are set in an ini-file, which content are 

discussed in Section 4.2. Several output parameters are stored at each epoch when the 

software is run. The following parameters are stored at each epoch and receiver 

 

• All parameters in the state vector X stored together with their covariance 

matrix ( the standard deviation for each parameter are determined by taking the 

square root of the diagonal elements in the cofactor matrix XQ ).  
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• the cycle slip detection parameters for single frequency combination, iono-free 

combination and the geometry-free combination.  

• The quality indicators that can be used for observation weighting: elevation 

angle and C/No value  

• The residuals for each observation type calculated as ( )ˆ= −v L h x
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5 The simulator 

We have developed a simulator that generates GPS observations with the main purpose 

to improve the debugging procedure and to allow the study of the processing 

performance of the deformation monitoring software in a controlled environment. With 

the simulator, it is possible to generate controlled observations between satellites and 

any point that represents the receiver position. By known observations we mean that all 

parameters in the observation equation are considered as known since their values and 

their stochastic process is chosen in the simulation procedure.  

The simulator is developed in Matlab, and it includes two steps: initialisation and 

simulation. In the initialisation all settings are defined for the simulation. A detailed 

description of the initialisation is found in Section 5.2.1. After the initialisation follows 

the simulation loop, where observations at each GPS receiver are generated, epoch by 

epoch. During each epoch the deterministic and the stochastic parts are generated for 

each parameter that influences the GPS observations, of the observation equations. As 

output from the simulator are RINEX-files with one file for each receiver. 

In the following sections the stochastic processes are described together with the 

parameters that are generated in each of them, and thereafter the simulation loop is 

described more in detail. 

5.1 Stochastic processes 

In the simulator the same deterministic models are used as in the Kalman filter 

algorithm described in the previous sections, and their stochastic parts are generated 

with the same type of stochastic processes as are modelled in the Kalman filter. We use 

three different types of stochastic models in the simulator: white noise, random walk 

and Gauss-Markov processes. In the white noise process no correlations are introduced 

between the epochs, implying that the autocorrelation function is zero and the 

stochastic properties of each white noise variable can be given by: 

 v,k RND,k vnδ = ⋅σ  (163) 

where v,kδ  is the noise at epoch k, 
RND,k

n is a normally distributed random value 

calculated at each epoch k and vσ  is the standard deviation of the parameter v, which is 

modelled as a white noise process. Two parameters are modelled as white noise 

processes: the observation errors and the orbital errors.  

Both the random walk and the Gauss-Markov processes are continuous in time, and  

the time correlation between the epochs is introduced. Starting with the random walk 

process, which have the following stochastic model 
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 v,k v,k 1 RND,k vn−δ = δ + ⋅σ  (164) 

where v,kδ  as before is the noise in epoch k, v,k 1−δ  is the noise calculated in the 

previous epoch and the random part is determined as white noise, like in Eq.(163). The 

stochastic parts of the ionosphere and the troposphere are generated with this model. 

The Gauss-Markov process is a little more complicated than the random walk model. It 

has an exponential autocorrelation function, which means that the correlation is 

reducing with time. To calculate the noise level at an epoch k one can use the following 

relation 

 ( )t
k v,k 1 ke W

− β⋅∆
−δ = δ +  (165) 

Where β  is a constant, t∆ is the time between the epochs and kW is a white sequence 

distributed as follows 

 ( )( )2 2 t

k vW N 0, 1 e− β∆= σ −  (166) 

The noise value can be determined each epoch as   

 ( ) ( )( )t 2 t

k,i v,k 1 v RND,ke 1 e n
− β⋅∆ − β∆

−δ = δ + σ −  (167) 

The only parameter that is estimated with a Gauss-Markov process is the multipath.  

Besides the parameters that are generated with stochastic models as described above, 

some parameters are assumed to be static in time in the simulator. We assume that this 

holds for the positions, velocity, phase ambiguities and the clock errors in the satellites 

and the receiver. If these values are changed they are changed by a known value. As an 

example, deformations can be simulated by changing the coordinates from one epoch 

to the next. The same procedure can be followed to generate cycle slips. How all 

parameters are treated in the simulator is summarised in Table 6. 

 

Table 6. This table describes how different unknown parameters are modelled in the 

simulator 

Parameter Deterministic part Stochastic model 

Position Static No 

Velocity Static No 

Ambiguities Static No 

Receiver clock error Static No 
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Table 6, cont. 

Satellite clock error In the Broadcast ephemerides  No 

Observation errors No White noise 

Common errors No White noise 

Ionosphere Klobuchar eq(78) Random walk 

Troposphere, zenith value Modelled with eqs.(89) and (90) Random walk 

Multipath No Gauss-Markov process 

 

Besides the models for the unknown parameters that are summarised in Table 6, there 

are also corrections for antenna phase centre variations added to the simulated 

observations.  

5.2 The flow in the simulator 

The simulator starts with an initialization, which is followed by a simulation loop, 

where the observations between satellites and receivers are generated. The output from 

the simulator is RINEX files that contain the simulated observations. The flowchart of 

the simulator can be found in Figure 13. 

5.2.1 Initialisation of the simulator 

The simulation is controlled by a setup-file which is read as the first step of the 

simulator initialisation procedure. All parameters that can be controlled in the 

simulation is set here like, filenames, start time, number of epochs to be simulated, time 

intervals between the epochs, coordinates of the receivers, standard deviations for each 

stochastic parameter and a set of switches that controls if the stochastic parameters 

should be included in the simulator; see Table 7. 
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Table 7. The setup file for the simulation software contains a set of switches that are used 

to control if the stochastic part of the parameters should be generated or not.  

------------------------------------------------------------------------ 

Simulation settings: 

StartTime:    2005 06 01 09 30 00     yyyy mm dd hh mm ss 

TimeInterval  : 2                     minutes from start to end of sim 

SimWeight     : N                     (Y = Yes: N = No) 

SimTypeWeight : 1                     (1:Equal 2:Elevation 3:C/No) 

SimIono       : N                     (Y = Yes: N = No)    

SimTrop       : N                     (Y = Yes: N = No)   

SimUseAntPar  : N                     (Y = Yes: N = No) 

SimMultipath  : N                     (Y = Yes: N = No)ma 

SimOrbErrors  : N                     (Simulate orbit errors) 

------------------------------------------------------------------------ 

As mentioned before, there some are parameters treated as fixed values during time, 

such as the receiver coordinates, clock errors and the phase ambiguities. Besides the 

receiver coordinates, all fixed parameters are generated automatically in the simulator.  

Read Setup file
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Figure 13. Flowchart of the simulator 
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When the setup-file is read, the initialisation continues by reading the broadcast 

ephemerides that are used to calculate the satellite coordinates in the simulation. This is 

again performed following the same procedure as in the deformation monitoring 

program by first determining standard orbits that are used to determine the satellite 

coordinates epoch by epoch. 

The last step in the initialisation procedure is to generate start values for the parameters 

that are set to be simulated as stochastic parameters. For the pure white noise 

parameters, that is uncorrelated in time, and for the random walk parameters the start 

values are set by: 

 RW RND,0 IniSV n= ⋅σ  (168) 

where RWSV  is the generated normally distributed start value RND,0n  and Iniσ  is the 

standard deviation for the actual parameter. Start values for the Gauss-Markov 

processes are represented by: 

 ( )( )2 t

GM Ini RND,0SV 1 e n− β∆= σ −  (169) 

where 
GMSV  is the start value for the Gauss-Markof process.  

5.2.2 Simulator loop and output 

After the initialisation the simulator starts to generate observations from the initial start 

epoch, and it continues until the last epoch is reached. Observations are generated for 

each receiver to all the satellites that are available in the broadcast ephemerides file 

given in the initialisation. To do this we useEqs. (115) to (118) which are rewritten as 

follows 

 
( ) ( )
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 (173) 

The simulation loop contains three steps. First the deterministic and the static 

parameters in the equations are determined. When this performed, the stochastic parts 

of the parameters are determined, and finally the stochastic parameters are generated 

for the next epoch. 

The deterministic parameters that are determined in the simulation loop are the 

distances between the receivers and the satellites ( S

Aρ ) at the actual epoch. Satellite 

coordinates are determined from the standard orbits that are generated from the 

broadcasted ephemerides. Receiver coordinates are corrected for earth rotation during 

the travelling time of the signal from satellite to receiver. The satellite clock 

offset Stδ and the time group delay ( S

GDT ) is obtained directly from the broadcast 

ephemerides. The receiver clocks ( A,L1tδ ) are assumed to be constant and with zero 

drift which implies that the ( dr,Atδ ) parameter is eliminated. The time offsets between 

the frequencies ( o,Atδ ) are also assumed to be zero, therefore this parameter also is 

eliminated. The ambiguities are generated as constant values, and how this is 

performed is described in the previous section. The deterministic parts of the zenith 

troposphere, S

d,AT , is determined with Eqs. (89) and (90). The zenith values are then 

mapped into the actual elevation angle with Neill mapping function; Eq.(91). The 

deterministic part of the ionosphere S

d,AI is determined with the Klobuchar model; 

Eq.(78). When the deterministic parts of the parameters are generated the stochastic 

parts are generated for each parameter. How this is carried out is described in the 

previous section. The final step in the simulation loop is to generate the stochastic 

parameters for the next epoch and to place the observations into the observation files 

following the RINEX format given by Gurtner (2001).  
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6 Tests 

To study the performance of the developed software for positioning and deformation 

monitoring, we use both simulated and real observations. The simulated observations 

are generated with the simulator and the true observations are collected in field with a 

setup that corresponds to a real deformation monitoring setting. Section 6.1 contains 

analyses based on simulated observations. The idea with this part is to study the 

performance of the software for deformation monitoring purposes and to study the 

influence of the antenna parameters on the estimated result. In Section 6.2 tests, where 

real observations are used. The observations are collected in Gothenburg during 

December 2005.  

6.1 Tests on simulated observations 

Some tests are carried out with simulated observations to study the performance of the 

deformation monitoring software. The main purposes with these tests are to see how 

the software responds on deformations and to study how the NGS-antenna parameters 

influence the result.  

6.1.1 Deformation detection 

We start with the deformation detection tests, where two observation files are generated 

in the simulator. The first file is generated for a reference station without any 

deformations, and the second file is generated as a rover with deformations. The 

deformations in the second observation file are simulated by simply changing the 

coordinates of the rover receiver from one epoch to the next. In our case the X-

component of the geocentric Cartesian coordinates, given in WGS84, is changed in 

epoch 20 by adding 1 centimetre and in epoch 60 by adding an additional 10 

centimetres. During the simulation all stochastic parameters are turned off, which 

means that the only errors that remain in the observations are the pure numerical errors, 

as the ones that occurred in the simulator when the observations were rounded to fit the 

RINEX-format. The simulated observations are thereafter run in the deformation 

monitoring software in position mode (P-mode) and position-velocity mode (PV-

mode). In P-mode the positions are estimated, this corresponds to a static solution, and 

in PV-mode are both positions and velocities estimated which is similar to a kinematic 

solution. 

The test starts by using the simulated observations in P-mode, which gives the result 

shown in Figure 14 below. In the figure the true and estimated X-coordinates are 

compared in WGS 84. The true coordinates are presented with a continuous line, and 



 82 

the dotted line is the estimated coordinates. Looking at the continuous line, it becomes 

quite clear where the simulated deformations occur. 
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Figure 14. Estimated coordinates for from the software calculated in position mode which 

corresponds to traditional static calculations. The continuous line corresponds to the true 

simulated X-coordinates with deformations at epoch 20 and 60. The doted line 

corresponds to the coordinates that are estimated by the software  

By studying Figure 14 it is clear that the P-mode does not give the correct coordinates 

when deformations occur. The solution will converge towards the correct values after 

some time, but it will take a lot of time.  

Instead of spending more time on the P-mode, we continue with the PV-mode where 

the same test is carried out with different values of the PSD-values. The PSD-value 

describes how much the variance is allowed to change from one epoch to the following 

and different values are tested here to see how the coordinate and velocity estimations 

are changing with different PSD-values. Figure 15, shows the estimated coordinates, 

and in Figure 16 the velocity changes are shown. 
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Figure 15. Deformations are simulated in epoch 20 by adding 0.01 metre to the initial 

coordinates and a additional 0.1 metre after 60 epochs. The true generated coordinates are 

given by the continuous line in the figure. The other lines represent the estimated X-

coordinate, with different PSD-values of the acceleration (PSDacc), from the deformation 

monitoring software.    

It is obvious by studying Figure 15 and 16, that the choice of PSD-value of the 

acceleration influences the estimation of coordinates and velocity, especially after an 

epoch, where a deformation occurs. With a high value of the PSD-acceleration, like 

PSDacc = 1e-2, the filter becomes more dynamic and the software reacts quicker on 

sudden deformations. This means that the size of PSD-acceleration must be set 

according to the expected movements of the object to be able to estimate the unknown 

correctly. Independent of the size of the PSD-value, the deformations can be found by 

studying the time series of the coordinates and the velocity. In the same epoch as the 

deformation occurs both the acceleration and velocity are changing as a response to the 

deformation. These responses can be used as deformation indicators, but exactly how 

this should be carried out is not analysed here, but instead this is left as an interesting 

subject for our further work.  
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Figure 16. Velocity changes during the observation time. The simulated deformations are 

obvious in the velocity plot as good indicators of deformations 

It must be pointed out that the observations that are used in the deformation detection 

test above are simulated without any observation noise. But tests where real 

observations are used show similar pattern, however with a higher noise level.  

6.1.2 Influence of the NGS-antenna parameters 

As mentioned in Section 3.2.4 we use antenna parameters determined by NGS. The 

calibration procedure includes determination of the antenna reference point (ARP), 

which corresponds to the constant offset between the physical antenna centre and the 

true phase centre of the antenna in the antenna coordinates system oriented towards the 

magnetic north, and the determination of elevation dependent error called phase centre 

variations (PRV). In this section we analyse how these values influence the coordinate 

estimation in the deformation monitoring software. The idea is to see how the 

estimation of the coordinates is influenced when the antenna parameters are ignored or 

used incorrectly. Typically a situation, where a risk that the antenna parameters are 
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used incorrectly, occurs when the antenna is screwed onto a tap and the antenna ends 

up in oriented in an arbitrary direction. If the operator of the instrument do not check 

the orientation of the antenna and adjust the NGS antenna parameters into the correct 

direction, the software will introduce new errors when it is applying corrections for the 

antenna since these parameters are determined for an antenna which is orientated 

towards north.  

To analyse how the result from the deformation monitoring software behaves when the 

antenna parameters are used incorrectly we use simulated observations. The 

observations are generated for a reference receiver and a rover receiver. The antenna at 

the reference receiver is correctly orientated towards north while the antenna at the 

rover receiver is incorrectly orientated towards the south direction. The antenna 

parameters for the rover antenna are generated by rotating the NGS-parameters towards 

south. This is quite simple since the only thing one needs to do is to switch signs of the 

parameters that correspond to the North and East components in the parameters. These 

values are highlighted with italic letters in Table 8. The observation files are generated 

for 100 epochs for each receiver. At the reference station an Ashtech Choke ring 

antenna model 701946.3 is used during the simulations and at the rover station is a 

Leica AT302 antenna used. The main reason that Ashtech antenna is used at the 

reference station is that it has very stabile values of the phase centre variations at 

different elevations. The size of these variations is only some tenth of a millimetre. The 

Leica antenna on the other hand has large variation in the PRV-values with a variation 

from 9 to -5.5 millimetres. Further this antenna have also a large ARP offsets in the 

north and east component which will influence the result when the antenna is 

orientated.  

 

Table 8. NGS-antenna parameters for Ashtech 701946.3 and Leica AT302 antennas. The 

NE-offsets for the Leica Antenna is highlighted with italic letters. The template for the 

antenna parameters can be found in Table 4 in Section 4.2.4.2 

ASH701946.3          D/M element,REV.3,chokerings,GPS+GLONASS NGS (  2) 99/09/02 

        .6        .8     109.8 

    .0   -.1   -.2   -.2   -.1   -.1    .0    .1    .2    .2 

    .2    .2    .3    .2    .2    .1    .1    .0    .0 

        .7       1.4     128.4 

    .0   -.2   -.3   -.3   -.3   -.3   -.3   -.3   -.2   -.2 

   -.2   -.3   -.3   -.3   -.2   -.2    .0    .0    .0 

 

LEIAT302-GP          External micropulse L1/L2 -groundplane   NGS (  7) 98/06/01 

      -2.2        .3      56.7 

    .0    .0    .7   2.1   3.6   5.3   6.8   8.0   8.8   9.0 

   8.7   7.8   6.2   4.0   1.2  -2.0  -5.5    .0    .0 

        .2      -1.7      53.6 

    .0  -1.1  -1.5  -1.5  -1.1   -.6    .0    .5    .9   1.0 

    .9    .5   -.1  -1.0  -2.2  -3.5  -4.8    .0    .0 
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If observations are calculated in static mode in a post processing software, the baseline 

would have been calculated between the physical phase centres, that are constituted by 

the ARP in the antennas, since this is the mean value of all observations over a long 

time period. In kinematic mode is the situation a different, the coordinates are here 

determined directly for a mean phase centre for all the observations the actual epoch. 

This implies that the satellite geometry influences the estimated positions if no or 

incorrect antenna parameters are used.  

The simulated observations are used in three different calculations. In the first 

calculation is the correct antenna parameters used. The result from this calculation can 

be found in Figure 17 where the difference between the true and the estimated 

coordinate is presented for each epoch. The difference between the known and the 

estimated coordinates are very close to zero, which indicates that the antenna 

parameters are correctly used. 

0  10 20 30 40 50 60 70 80 90 100

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

Epochs (s)

C
o

o
rd

in
a

te
s
 (

m
m

)

North

East

Up

 
Figure 17. Results from calculations done with correct antenna parameters  
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In the next calculation we use antenna parameters directly from NGS without rotating 

them towards south as the case when the observations where generated. The result 

Figure 18 shows that there are some constant errors introduced on the estimated 

coordinates. The size of the constant errors is the double size of the horizontal ARP 

values of the incorrectly orientated Leica antenna, 4.4 millimetres in the North 

direction and 0.6 millimetres in the East direction. The result in the up direction is not 

influenced of the result since this component of the NGS parameters are not influenced 

when an antenna is rotated.  The sudden jump in the coordinates at epoch 24 is related 

to ambiguity fixing. On the left side of the jump is the calculation done with a float 

solution and on the right side with fix solution. 
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Figure 18. The result form calculations where with incorrectly orientated antenna at the 

rover receiver 

The final calculation concerns the case where no antenna parameters are used at the 

rover receiver. In Figure 19 one can see the estimated coordinates as before. In this 

case, when no antenna model is used on the rover receiver, with an antenna orientated 
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south direction, the systematic error becomes much larger than in the previous cases. 

The change in the up direction corresponds quite well with the up parameter of the L1 

frequency in the NGS parameters of the Leica antenna but the change in north and east 

direction is much larger than expected by looking on the North and East components of 

the antenna model. The size of these errors is also influenced of the PCV that are 

elevation dependent.  
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Figure 19. Result from a calculation without any antenna parameters at the rover receiver 

To estimate the correct coordinates with the deformation monitoring software it is 

necessary to use the correct NGS-antenna parameters. Without them systematic errors 

introduced are with the size of several centimetres. From the result of these tests we can 

make the conclusion that it is better to use incorrectly oriented antenna parameters than 

no antenna parameters at all. If NGS-antenna parameters are used on an antenna, that 

are oriented in an incorrect direction the only error that will be introduced is a 

systematic error caused by the horizontal antenna offsets. This is true since the 

elevation dependent PCV corrections and the height offset are the same in all 
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directions, according to the NGS calibration, independent of the antenna orientation. 

This also means that, the only systematic error that are introduced, if incorrectly 

orientated antenna parameter is used during the calculations, is a horizontal offset, 

which do not influence the deformation monitoring performance, only the correctness 

of the estimated coordinates. On the other hand if no antenna parameters are used, not 

only the ARP offset will influence the result, the PCV corrections will also have an 

influence which is elevation dependent. The elevation dependency makes the estimated 

coordinates depending on the actual satellite configuration, which changes with time 

and the estimated coordinates will actually get an incorrect motion caused by the fact 

that no antenna parameters are used.  

6.2 Tests on real observations 

6.2.1 The observations 

The idea with the field observations is to get a set of observations that corresponds to a 

possible deformation monitoring configuration where a set of reference receivers are 

placed a few kilometres away from the deformation site. To do this we have used two 

permanent reference receivers placed in Gothenburg that are established by the 

Swedish Road Administration, which along with the SWEPOS-network constitutes a 

geodetic network in the project Marieholmsförbindelsen. More information about this 

project can be found at the homepage of the Swedish Road Administration 

(www.vv.se). The Swedish National Land Survey, Lantmäteriet, is the esponsible 

administrator of the receivers, and it has determined the coordinates of the receivers by 

using observations spanning over three weeks. All observations from these reference 

receivers are stored in RINEX format both with an epoch interval of 1 and 15 seconds.  

In total, the observations are collected with four receivers simultaneously; two of them 

are the permanent mounted references that are mounted on buildings. To separate them 

they are named HIS and BAG, which is the first three letters in the area where they are 

placed (Hisingsbacka and Bagaregården). The other two receivers are rover receivers, 

named ROV1 and ROV2. The reference receivers are Ashtech receivers used together 

with choke ring antennas, while the rover receivers are Trimble R7 receivers with 

Trimble Geodetic Zephyr antennas. The configuration of the receivers can be found in 

Figure 20. 
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Figure 20. A map over the northern part of Gothenburg with receiver positions.  

The rover receivers are placed only a few metres from each other during the tests; see 

Figure 21. The antenna of receiver ROV1 is held stable during all of the observations 

on top of a tripod while the antenna of ROV2 is used to simulate linear deformations. 

Its antenna is placed on top of a sliding platform, which is moved when deformations 

are simulated.   

A compass was used to align the tripods in an approximate north-south direction. The 

sliding platform is oriented towards the other tripod. Finally, when the antennas are 

mounted on the tripods and rotated towards the geomagnetic north, the observations are 

started. When about 30 minutes have elapsed, the antenna on the sliding platform is 

moved rather fast towards the other end of the platform. On top of the sliding platform 

is a measuring rod, which is used to determine the true distance of motion of the 

antenna.  
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Figure 21. Picture of the rover receivers taken from west towards east.   

6.3 Calculations with real observations 

The idea with this section is to compare the result from conventional software, which 

performs calculations by combining observations in double differences, and our 

software, that performs the calculations with undifferenced observations. All 

computations are done in post-processing mode with the same observation set. The 

traditional software we use is Trimble Total Control (TTC) version 2.73 and SKI PRO 

version 3.0. A total number of four baselines are formed with the observations, each 

containing 600 epochs. We use the following names of the baselines: BAG-ROV1, 

BAG-ROV2, HIS-ROV1 and HIS-ROV2. The naming convention is simple by using 

the point names, first the reference station and then the rover station. Two different 

setups are tested, namely first static and then kinematic. 

6.3.1 Static calculations 

As mentioned before, ROV1 is held fix during the complete observation period, 

therefore we start the analyses on this dataset. The static calculations are done both in 

dual frequency mode and in single frequency mode. The minimum elevation angle is 

set to 10 degrees during the calculations. Antenna parameters are used during the 
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calculations and no weighting models are applied.  Starting with dual frequency 

observations we get the results presented in Table 9 to 11. In each of the tables the 

coordinates of receiver ROV1 together with their standard deviations are shown.   

 

Table 9. Estimated coordinates of point ROV1 in static mode calculated in TTC in dual 

frequency mode.  All coordinates and standard deviations are given in WGS84 

Baseline X (m) Y (m) Z (m) Xσ  (mm) Yσ  (mm) Zσ (mm) 
HIS-ROV1 3339138.103  709216.281 5369727.785 1.1 1.0 1.4 

BAG-ROV1 3339138.101 709216.280 5369727.790 1.4 1.3 1.7 

 

Table 10. Estimated coordinates of point ROV1 in static mode calculated with Leica SKI 

PRO in dual frequency mode.  All coordinates and standard deviations are given in 

WGS84 

Baseline X (m) Y (m) Z (m) Xσ  (mm) Yσ  (mm) Zσ (mm) 
HIS-ROV1 3339138.101  709216.278 5369727.785 0.1 0.1 0.1 

BAG-ROV1 3339138.099 709216.277 5369727.784 0.1 0.1 0.2 

 

Table 11. Estimated coordinates of point ROV1 in static mode calculated in undifferenced 

mode and with dual frequency. All coordinates and standard deviations are given in 

WGS84 

Baseline X (m) Y (m) Z (m) Xσ  (mm) Yσ  (mm) Zσ (mm) 
HIS-ROV1 3339138.104 709216.279 5369727.788 0.1 0.1 0.3 

BAG-ROV1 3339138.109 709216.275 5369727.793 0.1 0.2 0.3 

 

Comparing the results from the static dual frequency calculations, we can se that 

different softwares give different results. In general the undifferenced processing mode 

gives a slightly higher value on the X and Z coordinates than the commercial softwares. 

Exactly what this depends on can not be explained, since the commercial softwares 

works like black boxes. Thus, we can assume that variations in the estimated 

coordinates depend on, for example, that the softwares applies different weighting 

models to the observations or that different approach are used when modelling the 

troposphere. The standard deviations in SKI are generally lower than the standard 

deviations in our software which indicates that we do not model the deterministic and 

stochastic parameters as good as Leica does. In general the standard deviation is 

increased when the distance between the stations are increased.  
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The huge difference between the standard deviation in TTC and SKI (about 10 times 

higher) could depend on some multiplication constant but this is not confirmed with 

Trimble.  

 

Table 12. Estimated coordinates of point ROV1 in static mode calculated with TTC in 

single frequency mode.  All coordinates and standard deviations are given in WGS84 

Baseline X (m) Y (m) Z (m) Xσ  (mm) Yσ  (mm) Zσ (mm) 
HIS-ROV1 3339138.102 709216.278 5369727.785 1.4 1.3 1.6 

BAG-ROV1 3339138.101 709216.278 5369727.787 1.5 1.5 1.8 

 

Table 13. Estimated coordinates of point ROV1 in static mode calculated with Leica SKI 

PRO in single frequency mode.  All coordinates and standard deviations are given in 

WGS84 

Baseline X (m) Y (m) Z (m) Xσ  (mm) Yσ  (mm) Zσ (mm) 
HIS-ROV1 3339138.101 709216.279 5369727.786 0.1 0.1 0.2 

BAG-ROV1 3339138.099 709216.278 5369727.786 0.2 0.1 0.2 

 

Table 14. Estimated coordinates of point ROV1 in static mode calculated in undifferenced 

mode in single frequency mode.  All coordinates and standard deviations are given in 

WGS84 

Baseline X (m) Y (m) Z (m) Xσ  (mm) Yσ  (mm) Zσ (mm) 
HIS-ROV1 3339138.105 709216.279 5369727.788 0.2 0.1 0.3 

BAG-ROV1 3339138.110 709216.275 5369727.794 0.2 0.2 0.3 

 

For single frequency the results for the prior dual frequency calculations are repeated. 

The result from the undifferenced approach is slightly different than the one given by 

the conventional softwares. The overall standard deviations are increased, compared 

with the dual frequency calculations above, since fewer observations are used.  

Troposphere modelling is rather complicated in the case when large height differences 

occur between the reference and rover stations at the receivers. Schön et al. (2005) 

discussed this problem and presented a solution for double difference calculations, 

where several reference receivers are placed at different heights around the rover 

stations to determine the troposphere at the rover station. In the GPS network in 

Gothenburg, where we performed our tests, there are quite large height differences 

between the reference stations and the rover station. The rover station is placed 

approximately 39 metres over the WGS84 ellipsoid which gives a height difference to 
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the reference stations of approximately 24 metres for the short baseline and 79 metres 

on the long baseline. To study if the height difference influences the result during the 

coordinate estimations we have simulated observations for two baselines. The receivers 

of the first baseline are placed on the same height over the ellipsoid and in the second 

baseline is a height difference of 100 metres used. As in the case where the influence of 

the antenna parameters where studied, no additional errors where added to the 

observations during the simulations. When calculating the baselines in TTC we found 

that correct coordinates where estimated when the points where placed on the same 

height above the ellipsoid and when a height difference where introduced the same type 

of offsets occur as we found in the coordinates in  

Table 11 and 14, above. If the same baselines are calculated in our software, which is 

based on undifferenced observations, the correct coordinates are estimated. Thus, we 

do not use the same tropospheric algorithm as is used in TTC or Leica SKI PRO, and 

therefore we get other coordinates during the static calculations. This is a case that we 

have to study more in detail in our further development of our deformation monitoring 

software. 

6.3.2 Kinematic calculations 

Now we continue to study the result from the kinematic solution. This is done with the 

same datasets as in the static calculations, and the calculations are performed both in a 

commercial and in our own software. Estimated coordinates are compared with the 

statically calculated coordinates that are determined with the same setups, i.e. the 

estimated coordinates in kinematic mode that are determined in TTC are compared 

with the static coordinates from the same software. This is the only fair way to compare 

the performance of the softwares, since the troposphere is treated differently from 

software to software, as described previous. We do not study the coordinates itself but 

instead the difference between coordinates that are transformed into geocentric 

coordinates with the origin of the coordinates in the static solution. The standards 

deviation for each kinematic dataset are also calculated and presented in the following 

sections.  

Several different settings are tested in both single and dual frequency mode to see how 

the result is influenced by the different setups. During the calculations the minimum 

elevation angle is set either to 10 or 15 degrees. In theory, the result should improve 

when the lower elevation limit is used, since that more satellites become available. The 

problem with this approach is that the observations at low elevation angles will be more 

noisy then the other observations to satellites at higher elevation angles. To compensate 

for the noise level for these observations the weighting models are presented in Section 

6.3.3 are applied in the adjustment.  
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6.3.2.1 Kinematic results calculated with Trimble Total Control 

As a reference for our calculation a conventional software is used to estimate 

coordinates in kinematic mode. The estimated coordinates are compared with the 

corresponding static coordinates determined with the same software. The result from 

these calculations can be found in Table 15. The coordinate differences are given in 

millimetres between the geocentric coordinates of the static solution and the mean 

value of the kinematic solution. Also standard deviations are given for the kinematic 

solution.  

 

Table 15. Coordinate differences between the mean values of the kinematic and the static 

coordinates together with the standard deviations of the kinematic coordinates 

Baseline Elev. Type Mean Value (mm) STD (mm) 
 (deg)  N E U N E U 

HIS-ROV1 15 SF -1.595   -1.386    3.929 2.9     2.0     3.8 

HIS-ROV1 10 SF -0.911   -1.266    3.082 2.8     2.1     3.6 

BAG-ROV1 15 SF -1.653   -0.279    6.167 3.2     4.0     3.9 

BAG-ROV1 10 SF -1.441   -0.229    5.956 3.0     3.8     3.6 

 

As can be seen in this solution, the difference between the static and the kinematic 

solution is within 1.5 millimetre in the North and East components, but in the Up 

component the deviation is larger (up to 6 millimetre) on the longest baseline between 

BAG and ROV1. In general the standard deviations are lower when observations are 

measured down to an elevation angle of 10 degrees. This is quite obvious, since more 

observations are accessible when more satellites are above the minimum elevation 

angle. A disadvantage with the observations at low elevation angles is that their noise 

level is higher. To overcome this problem one can by apply weighting models, as them 

introduced in Section 3.3.3. This is probably performed in the kinematic calculation 

procedure in TTC.  

The calculated coordinates that are used to estimate the mean value and standard 

deviation for the baseline BAG-ROV1, with 10 degree elevation angle, are plotted in 

Figure 22. 
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Figure 22. Coordinate differences between the static and kinematic coordinates calculated 

in TTC for baseline BAG-ROV1.  

If we compare the mean values of the kinematic coordinates, given in Table 16, they 

are closer to the static solution calculated with the undifferenced software, given in  

Table 14, than the solution that are given by TTC.  

 

Table 16. Mean values of the estimated coordinates from the kinematic solution calculated 

in TTC. All coordinates are given in WGS84 

Baseline Elev. Type X Y Z 
HIS-ROV1 15 SF 3339138.1047 709216.2783 5369727.7873 

HIS-ROV1 10 SF 3339138.1036 709216.2782 5369727.7870 

BAG-ROV1 15 SF 3339138.1062 709216.2782 5369727.7913 

BAG-ROV1 10 SF 3339138.1058 709216.2783 5369727.7912 

This indicates that TTC uses different models for the troposphere in static and 

kinematic calculations and the one used in kinematic mode could be the same that we 

are using in our software. No further investigations are done within this subject. 
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6.3.2.2 Undifferenced GPS in kinematic mode 

The kinematic calculations with our undifferenced software start with the short baseline 

between the stations HIS and ROV1. Calculations are done in both single and dual 

frequency mode. The lowest elevation angle is set to 10 and 15 degrees. Figure 23 

yields a typical result from a kinematic solution. The initial coordinates in the 

initialisation file is set to the known coordinates, from the static solution, to “help” the 

software a little bit so that the ambiguity can be solved quicker. This is not necessary in 

a real setup; navigated coordinates will do, since the solution in the software will 

converge to the correct coordinates during time and the ambiguities can be fixed. It will 

however take some more time than in the actual case when the correct coordinates are 

used as initial coordinates.  
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Figure 23. Coordinate differences calculated in undifferenced solution with a 15 degrees 

elevation limit and single frequency mode 

At epoch 30, the ambiguities are fixed in all of the following figures. This can be seen 

in the coordinate difference plot, Figure 23, when the solution makes a quick jump 

towards the correct solution. When the ambiguities are fixed, the solution starts to 

wander back and fourth over the correct solution. This pattern is probably caused by 
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the multipath or some other none or incorrectly modelled parameter that influences the 

observations. All estimated coordinate after the ambiguity fixing are used to determine 

the mean value and the standard deviation for the kinematic solution. The difference 

between the coordinates calculated in the static solution and the kinematic solution are 

presented in Table 17. The standard deviations are again lower when the elevation limit 

is set to 10 degrees; this holds as well for single and dual frequency.  

 

Table 17. Coordinate differences between the mean value of the kinematic and the static 

coordinates together with the standard deviation of the kinematic coordinates calculated 

in undifferenced mode 

Baseline Elev. Type Mean Value (mm) STD (mm) 
 (deg)  N E U N E U 

HIS-ROV1 15 SF  0.5  0.3 -0.4 3.2     2.6     3.9 

HIS-ROV1 10 SF  0.0     0.3     0.4 3.7     3.2    3.8 

HIS-ROV1 15 DF -1.3   -0.6      1.5 2.7     1.9    3.6 

HIS-ROV1 10 DF -0.5    -0.4      0.1 2.9       2.2 4.0 

It is beneficial to lower the elevation angle, but it also introduces problems as increased 

observation noise.  
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Figure 24. Coordinate difference calculated undifferenced solution of baseline HIS-ROV1, 

elevation angle 10 degrees, and single frequency 

In Figure 24, the differences between the static and the kinematic coordinates, 

calculated in single frequency, are plotted but now for a minimum elevation angle of 10 

degrees. Comparing this figure with the previous, one can observe that the estimated 

coordinates are more “noisy” between epoch 130 and 230, and that there is a high 

“spike” at epoch 212. This noisy part of the estimations originates from the fact that the 

signal to one of the satellites at receiver B is not stabile. The signal appears and 

disappears with a high frequency, probably caused by some tree at the observation site. 

Another indication that the signal to this satellite is poor is the C/No value, which is 

very low for this satellite.  

Returning to Table 17 and comparing the standard deviations in single and dual 

frequency mode, the standard deviations are in general lower in the dual frequency, but 

the offsets of the mean values are in general larger for these solutions than in single 

frequency mode.  

The same baseline as in Figure 23 and 24 is found in Figure 25, here calculated in dual 

frequency mode and the outcome from the 10 degree elevation limit. The larger amount 

of observations calms down the noisy part, compared to the single frequency mode 

presented in Figure 24, i.e. the spike at epoch 212 is completely removed. 

Now we continue with the longer baseline and do exactly the same calculations as for 

the previous baseline. The result can be found in Table 18, below. 

 

Table 18. Baseline HIS-ROV1 mean values and standard deviation (STD) of the difference 

between coordinates calculated in kinematic mode and static mode, presented in local 

horizontal coordinates. The calculations are performed at both 10 and 15 degrees elevation 

angle and in single frequency (SF) and dual frequency (DF) mode.  

Baseline Elev. Type Mean Value (mm) STD (mm) 
 (deg)  N E U N E U 

BAG-ROV1 15 SF - - - - - - 

BAG-ROV1 10 SF 0.1      0.6      0.7 3.4     3.3     4.3 

BAG-ROV1 15 DF 1.2      -0.6 -0.0 2.3     2.6     2.6 

BAG-ROV1 10 DF 1.3    -1.0   -0.4 2.8    2.6     3.2 
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Figure 25. The noisy part is slightly smoothed when dual frequency observations are used. 

In the figure are the coordinate differences of baseline HIS-ROV1 calculated in dual 

frequency mode with a 10 degree elevation limit  

The undifferenced software did not manage to solve the correct coordinates in single 

frequency mode when the elevation angle where set to 15 degrees. The geometric 

precision of dilution value (GDOP) is about 2.5 for the complete set of observations, so 

it is nothing wrong with the geometry of the 5 available satellites but one of the 

satellites have a little bit lower C/No value than the other which could result in the 

incorrect solution. The solution can be found in Figure 26.  

The standard deviations in Table 18 do not follow the same pattern as in the former 

short baseline. Here the standard deviation increases when satellites at lower elevation 

angles are included. A possible explanation to this result is that the C/No values are 

very weak for some satellites, which can be seen in Figure 27. Values below 30 dB are 

normally considered as weak, and in software like TTC these values are removed. 

Further when studying the C/No plot below one finds that the C/No value sometimes 

are zero, which indicates that the satellite is lost during the observations. So the number 

of dual frequency observations is not constant during time and the solution becomes 

during these times a combination of single and dual frequency observations. The 

standard deviations in the single frequency calculations are higher than in the dual 
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frequency, so involving the single frequency observations in the dual frequency 

solution will in this case introduce some additional errors to the solution.  
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Figure 26. Coordinate differences, baseline BAG-ROV1 calculated in single frequency 

mode with a 15 degree elevation limit. At epoch 400 the incorrect values of the ambiguity 

are fixed which results in incorrectly estimated coordinates 

Now it is also possible to compare the result from the conventional software TTC and 

our undifferenced software by comparing the results in Table 15, 17 and 18. In general, 

the differences between the static solution and the mean values of the kinematic 

coordinates are smaller in our undifferenced solution, but the standard deviation values, 

are about 1 mm in all the components independent of whether the single or dual 

frequency solutions are used. Still we do not know how TTC computes the kinematic 

coordinates. We do not know if the software applies some weights to the solution or if 

the solution is smoothed with some kind of filter. We can assume that it uses the 

complete dataset to solve the ambiguities and to detect cycle slips. This can not be 
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performed in real-time applications but what we can do is to apply weights to the 

observations. This is tested in the following section to see if we can improve our result. 
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Figure 27. C/No plot for the L2 observations on the ROV1 receiver.  The bold lines 

indicates observations which are below the 30 dB C/No value 

6.3.3 Different weighting procedures 

The undifferenced solution is sensitive to the number of satellites. To increase the 

number of satellites one can lower the elevation limit. A problem that then occurs is 

that noisier observations are included into the filter. Furthermore, the difference in 

noise between the observations increases and observation weighting becomes 

necessary. In Section 3.3.3 some different weighting models are presented, and we are 

going to study the performance of three of them in this section. The equal weighting 

approach is already used earlier in this chapter. The other two weighting models are the 

elevation based model presented by Wieser and Gaggl (2005) found in Eq.(124) and 

the C/No based model presented by Hartinger and Brunner  (1999) in Eq.(125).  

There is a problem when implementing the last two weight models, which we have 

ignored in the current phase in the software development. These weighting models are 

designed for dual frequency observations, and there are some coefficients in each 

model that are supposed to be estimated with the double difference residuals in a least 

squares sense. To estimate the coefficients reliably one must use a long observation 

time, so that observations to all possible elevation angles and all signal to noise levels 

are covered. This means that at least 24 hours of observations are recommended. Our 

problem is that the software that we have developed in Matlab is quite time consuming 

and therefore no observation weights are estimated. Instead we use default values that 
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are based on the standard accuracy of phase observations that are described in the 

beginning of Section 3.3.3 as the coefficients in the elevation dependent weighting 

models. These values seem to correspond to the true values when shorter observation 

times are used to estimate the coefficients. In the signal to noise dependent weighting 

models introduced as the sigma-e model by Hartinger and Brunner (1999) we use their 

estimated value of the variable 1a  ( -4 21.61 10 m⋅ ). The coefficient 0a is set to zero just 

as they did. The results from the weighting procedures are presented in Table 19, where 

weighting model 1 is equal weighting, model 2 the elevation based weighting and 

model 3 is based on the C/No values. The calculations are made in both single and dual 

frequency mode, and the elevation limit is set to 10 degrees. 

 

Table 19. Different weighting models are applied in the kinematic calculations of the 

baselines. Model 1 is equal weighting, model 2 elevation dependent weighting and model 3 

is C/No based weighting 

Baseline Weight Type Mean Value (mm) STD (mm) 
 Model  N E U N E U 

HIS-ROV1 1 SF  0.0     0.3      0.4 3.7     3.2    3.8 

HIS-ROV1 2 SF -0.1      0.4    -0.2 3.9     2.6     3.9 

HIS-ROV1 3 SF  0.2      0.3    -0.1 3.3     2.8     3.4 

HIS-ROV1 1 DF -0.5    -0.4      0.1 2.9        2.2 4.0 

HIS-ROV1 2 DF -0.4      0.3    -0.4 3.6     2.7     3.8 

HIS-ROV1 3 DF -0.4      0.1    -0.4 2.8     2.4     3.5 

BAG-ROV1 1 SF  0.0      0.6      0.7 3.4     3.3     4.3 

BAG-ROV1 2 SF  1.1      1.0      0.2 2.9     3.4     3.2 

BAG-ROV1 3 SF  1.6    -0.8    -1.7 2.8     2.6     3.2 

BAG-ROV1 1 DF  1.3    -1.0    -0.4 2.8     2.6     3.2 

BAG-ROV1 2 DF  1.3    -0.3      0.1 2.6     3.2     2.1 

BAG-ROV1 3 DF  0.0      0.6      1.5 3.3     3.7     3.4      

More or less generally one can say that the C/No based weighting approach gives the 

best result in the single frequency (SF) calculations. There are some exceptions, take as 

an example the standard deviation value of the east component of the baseline HIS-

ROV1, where the best weighting procedure are given by the second weighting model. 

But if the complete sets of standard deviations in all the components are treated we get 

a different result where the C/No based weighting procedure gives the best result.  

In the dual frequency mode, the results are not that convincing as in the single 

frequency mode. Here the C/No weighting procedure gives the worst result even worse 

than the equal weighting procedure.  

With the result from these tests, one can conclude that there is a great potential in 

improving the result by applying weights to the observations. This is especially obvious 

in the single frequency mode where the standard deviation became lower by applying 
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weights. The mixed result in the dual frequency mode is likely due to the parameters 

that are used in the weighting functions, which not are estimated correctly. With a long 

set of observations, one could determine a better value for this constant, but as 

mentioned before, we do not have the options to calculate these observations yet.  

Interesting to see is that the noisy part in Figure 24 is removed when using the C/No 

weighting; see Figure 28, below. 
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Figure 28. Coordinate differences calculated undifferenced solution of baseline HIS-

ROV1, elevation angle 10 degrees, single frequency and C/No weighting according to 

Hartinger and Brunner (1999) 

The improvements that are seen in these initial tests with weighting of observations 

indicate that there are great potentials left to improve the result in the undifferenced 

approach.  

6.3.4 Deformation detection with real observations 

To verify that it is possible to detect deformations with the developed software, the 

deformations are generated by simply moving an antenna at a rover station linearly a 

known distance. This is done at rover station ROV2 during the field observations in 

Gothenburg. As described before in the presentation of the observations, the antenna of 
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ROV2 is placed on top of a sliding platform, which is used to generate a deformation. 

The deformation was generated at epoch 393 by moving the antenna horizontally 0.360 

metres towards south on the sliding platform.  

Calculations of the observations are performed in the undifferenced software in dual 

frequency mode with a 10 degree elevation limit and with equal weighting and in TTC. 

The result can be found in Figure 29, the epoch with the deformation is well marked 

since the coordinate’s changes in this epoch. One can assume that only the north 

coordinates would change during the deformations but there is also a small deformation 

in the easting component. This deformation depends on the fact that the sliding 

platform was not set up exactly in a north-south direction.  
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Figure 29. Result from the generated deformations, baseline HIS-ROV2 

Comparing this result with the result that we got when the simulated observations were 

used, we see the same pattern. There will be a lag in the coordinate estimations after the 

deformation which, depends on the value of the PSD-acceleration value.   
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If the mean value of the coordinates is determined from the kinematic solution before 

and after the deformation one can determine the size of the deformation to 0.361 

metres. This is the same value that we get if the size of the deformation is calculated in 

TTC. The only difference between these two solutions is that there is no lag directly 

after the deformation caused by the Kalman filter in the TTC solution, since no Kalman 

filter is applied in this solution. The result from this test shows that the undifferenced 

approach will work in deformation monitoring purposes.  
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7 Summary, Conclusions and Further Research  

7.1 Summary and Conclusions 

There are several possible surveying methods to measure movements and detect 

deformations, both absolute and relative ones. The relative methods detect the 

deformations without relating the observations to some fix object outside the actual 

monitored object. In the absolute methods at least one measuring device is placed at a 

fix point outside the moving area.  

Among the relative methods, deformation monitoring systems based on GPS 

observations are good alternatives since, they provide the opportunity to measure with 

high precision and over long distances without the condition that there must be a line of 

sight between the reference point and the moving objects.  

Traditionally, monitoring systems based on GPS observations are based on algorithms 

that create double differences in the observation equations. Double differences remove 

all parameters related to the satellite and receiver clocks each at epoch and the 

singularity in the observation equations is also removed, other error sources are 

typically reduced. This is a good result but, it will not come without some 

disadvantages. Correlations are introduced among the double differences since they are 

combinations of four observations, recorded at two stations towards two satellites. The 

situation becomes even more complicated when more than one reference station is 

used. These introduced correlations are difficult to model correctly, and they are 

therefore often ignored within traditional GPS calculations based on double 

differences.  

In this thesis an alternative method is introduced based on undifferenced GPS-

observations. The method is mathematically based on a state space approach, where the 

correlation in time for each parameter is used instead of eliminating the parameters as 

in the previous case. This is done in a Kalman filter, where all unknown parameters are 

estimated together at each epoch. The benefit with the method is that no correlations 

are introduced into the observations, and that most of the estimated parameters are the 

true parameters and not parameters that are combinations of several parameters as in 

the case when double differences are used. The main problem with the methods is that 

all parameters must be modelled correctly. If not, biases will be introduced in the other 

modelled parameters caused by the unmodelled parameters. In the undifferenced 

approach it is easy to add additional reference receivers without having the problem 

with correlations that occurred when double differences were used. 
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Our hypothesis in this thesis is that we assume that one can estimate the coordinates in 

real-time based on the undifferenced algorithm with the same precision or better than in 

the traditional algorithms based on double differences. The main argument that we base 

our hypothesis on is the fact that we use the correlation in time for all unknown 

parameters instead of eliminating them and that all correlations between the epochs are 

used in the estimation.   

To evaluate the hypothesis, we have developed a post processing software in Matlab. 

The software is designed so that it easily can be transformed into a real-time 

application in the future. The Kalman filter is presented in Chapter 3 together with all 

deterministic models for the unknown parameters in the filter. Two new algorithms are 

also introduced in this chapter. One algorithm that unifies the calculation of satellites 

coordinates for precise and broadcast ephemerides are presented developed by 

Horemuz and Andersson (2006). The other new algorithm is generated to adopt the 

NGS-antenna parameters so that it can be used on an antenna that is rotated in an 

arbitrary direction. This algorithm seems to be very useful in engineering applications.  

In Chapter, 4, the implementation details of the software are described. Traditional 

cycle slip detection algorithms are presented as well as the Lambda method, which is 

used for the phase ambiguity fixing. Several different observation weighting 

procedures are also introduced in this chapter based on the quality indicators as the 

elevation angle and the C/No value that are available from the instruments. 

A simulator to generate observations is developed to perform debugging and tests in a 

known environment. All unknown parameters that are estimated in the state vector of 

the Kalman filter are included in the simulator, which is described in Chapter 5.  

In Chapter 6 the result from different tests are presented. The tests are performed with 

both simulated and real observations. The real observations are calculated both in our 

own developed software and the commercial software as Trimble Total Control and 

Leica SKI PRO. The first tests where performed with simulated observations to study 

the deformation monitoring performance of the developed software and to analyse the 

influence of the antenna parameters and influence of incorrectly orientated antennas.  

The results from these tests prove that the undifferenced software is suitable for 

deformation monitoring, and it is necessary to use correctly orientated antenna 

parameters if the true coordinates of the physical centre is wanted. The results from the 

tests with real observations and generated deformations show that comparable results 

are achieved with our software as in the conventional software Trimble Total Control 

(TTC). 



 109 

From the observations with the generated deformation we conclude that a deformation 

can be found by studying the change in the coordinates or the velocity. A deformation 

occurs distinctly in coordinate estimates as a jump from one stable coordinate to 

another. In the velocity estimates the corresponding deformations can be found as a 

sudden spike. Here is a potential research area in the future, to develop an algorithm 

that identifies deformations based on the output from the software in a real-time.  

In the second investigation with simulated observations the algorithm to modify the 

NGS-antenna parameters was tested. In the simulator with where observations 

generated with incorrectly orientated antennas. These observations where then used to 

calculate coordinates, without and with antenna parameters which was modified and 

unmodified according to the presented algorithm. The result showed that if no antenna 

model is used then the estimated position is displaced with several centimetres. If 

incorrect orientated antenna parameters are used then are coordinates incorrect only in 

the horizontal direction, and, finally, if the correct antenna parameters were used then 

the correct coordinates are estimated. These tests show how the importance of using the 

correct antenna parameters.   

To get an indication of the performance of the software, we use real observations, and 

we compute them both in our and in conventional softwares. The calculations are 

performed in both static and kinematic mode. The real observations contain 600 epochs 

are recorded with 1 second intervals. The result from the static calculations showed that 

the coordinate differences between our and the conventional softwares differenced a 

few millimetres, especially in the X and Z component (WGS 84). We concluded that 

one reason for this difference could be different modelling of the troposphere or 

depending on the weighting procedures. In general it is rather difficult to model the 

influence of the troposphere if the height difference between the stations is large. In our 

case is the height difference about 89 metres. This is why we assume that the 

troposphere is the reason to the coordinate differences. Here we got another potential 

work in the future, to study different tropospheric models and different optimal setups 

of the reference receivers to be able to estimate the correct troposphere. 

The results in kinematic mode have been compared by the same method as the static. 

Kinematic coordinates were calculated in both conventional and the undifferenced 

software. The mean values of all kinematic solutions are compared with the static result 

from the corresponding static solution.  

Surprisingly large difference occur between the static and the kinematic solution when 

the conventional software where used. It is obvious, that the algorithms are different. It 

is again especially the height components that differ from the traditional solution. 

Again we suspect that the troposphere or the weighting procedures causes these offsets. 
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When comparing the same solutions in the undifferenced mode, the differences are 

much smaller. The reason to this is that the solutions both are based on the same 

algorithms and therefore are approximately the same result achieved.      

The accuracy in the undifferenced software is not yet optimal. This is clear when the 

result from the conventional software were compared with the undifferenced solution. 

The standard deviation is about 1 mm higher in all components in the undifferenced 

solution, but one should notice that this solution corresponds to the solution that one 

gets in a real-time application. We do not know exactly, but one can assume that the 

conventional software uses the complete dataset in some kind of pre processing when 

the kinematic calculations are performed which is not possible in a real-time 

application, where observations are only available up to the last epoch.  

During the kinematic calculations a problem occurred. In one of the baselines the 

undifferenced software did not find the correct phase ambiguities, which lead to 

incorrectly estimated coordinates. This is a situation that obviously can occur even if 

the satellite geometry is good.  One problem with the actual data set was that the signal 

quality was quite poor to some of the satellites. Therefore an improved algorithm to test 

the phase ambiguities is needed. In the current version of the software we test the 

ambiguity candidates using observations only from one epoch. This algorithm can be 

improved so that more epochs are involved in the ambiguity testing.  

It is well known that the influence of noise on the signal becomes higher when the 

elevation angle towards the satellite becomes lower. To improve the results in the 

undifferenced software some initial tests were performed with different observation 

weighting approaches. The results from these tests indicate that it is possible to 

improve the result by applying weights. All the tested observation weighting methods 

are dependent on the combination of receiver and antenna. This is not considered 

during our tests, where we have used only default values taken from other research 

groups, which means that it is possible to improve the result by studying this subject 

further. 

7.2 Further developments and research 

This thesis proves the hypothesis that it is possible to determine deformations with 

undifferenced GPS-observations. The estimated accuracy that we got so far in our 

undifferenced software is not as good as the same as in traditional kinematic 

calculations based on double differences, but there are several potential factors left that 

can improve the result. We have already in the previous section mentioned that the 

influence of the troposphere is one of the factors that can be studied further as well as 

different weighting procedures. The following developments can be implemented to 
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improve the result; a more stabile ambiguity testing algorithm which uses more than 

one epoch to fix the ambiguities, a correct weighting algorithm for the observations.  

One of the main purposes with this project is to see if it is possible to improve the result 

by using several reference stations in a multipoint solution. This is not done yet and 

therefore, this is one of the main target in the continuation of the project. 

Our goal in the project was to generate a real-time software. To reach this goal we need 

to change the programming language to a language that are better adopted for real-time 

applications. The code is so far written in Matlab which is a very good language when 

developing and testing applications, but Matlab is not suited for real-time applications. 
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9 Appendix A 

Coefficients of the hydrostatic mapping function developed by Niell (1996) 
Average 

Latitude 

a b
  c
  

15 1,2769934E-03 2,9153695E-03 6,2610505E-02 

30 1,2683230E-03 2,9152299E-03 6,2837393E-02 

45 1,2465397E-03 2,9288445E-03 6,3721774E-02 

60 1,2196049E-03 2,9022565E-03 6,3824265E-02 

75 1,2045996E-03 2,9024912E-03 6,4258455E-02 

 

Amplitude (hydrostatic) 

Latitude a b  c 
15 0,000 0,000 0,000 

30 1,2709626E-05 2,1414979E-05 9,0128400E-05 

45 2,6523662E-05 3,0160779E-05 4,3497037E-05 

60 3,4000452E-05 7,2562722E-05 8,4795348E-04 

75 4,1202191E-05 1,1723375E-04 1,7037206E-03 

 

Amplitude (wet) 

Latitude a b  c 
15 5,8021897E-04 1,4275268E-03 4,3472961E-02 

30 5,6794847E-04 1,5138625E-03 4,6729510E-02 

45 5,8118019E-04 1,4572752E-03 4,3908931E-02 

60 5,9727542E-04 1,5007428E-03 4,4626982E-02 

75 6,1641693E-04 1,7599082E-03 5,4736038E-02 

 

Height correction 

ha  hb  hc  
2,5300000E-05 5,4900000E-03 1,1400000E-03 

 


